O-RINGS DESIGN HANDBOOK
 SECOND EDITION, 2022

\int NEW DEAL SEALING SOLUTIONS

PREFACE

THE NEWDEALSEALS HANDBOOK

Since its initial release in 1994, the O-ring handbook has become a fixture on the reference shelves of engineers worldwide. This new book (2022) contains extensive information about the properties of basic elastomers (rubber), as well as examples of typical 0 -ring applications, fundamentals of static and dynamic seal design and 0-ring failure modes. It also provides an overview of international sizes and standards - with a comprehensive chemical compatibility table for gases, fluids and solids.
Many engineers choose O-rings designed by NewDealSeals to keep their equipment running safely and reliably. That is because NewDealSeals is a developer, designer and supplier of high quality sealing solutions and offers a unique combination of experience, innovation and support.

WARNING - USER RESPONSIBILITY

This NewDealSeals handbook provides product or system options for further investigation by users with technical expertise.
Through his own analysis and testing, the user is solely responsible for making the final selection of the system and components and for ensuring that the performance, maintenance and safety as well as all requirements of the application are met. The user must analyse all aspects of the application, follow applicable industry standards and follow the information concerning the product mentioned on our website (www. newdealseals.com).

COMPATIBILITY OF SEALS AND OPERATING MEDIA CLEANING AGENTS

Due to the great diversity of operational parameters affecting fluidic devices and their impact on the material of the seals, it is crucial that the manufacturer of these devices approves the seals for functional and operational suitability under field conditions. Furthermore, in view of the consistent increase of newly available media used in hydraulic oils, lubricants and cleaning agents, special attention is drawn to the aspect of compatibility with sealing elastomers (rubber) currently in use.
Additives are contained in base media in order to enhance certain functional characteristics of sealing materials. For this reason, it is imperative that any products equipped with our seals should be tested for compatibility with operational media or cleaning agents. This approval process should be conducted by you, either at your plant or by simulated field tests prior to any field use.

TABLE OF CONTENTS

NTRODUCTION	5-8	
Using this design guide- An O-ring primer-		
MATER\\|ALS	9-167	
Back to basics	-	

TABLE OF CONTENTS

\longrightarrow

F A I L U R E D I A G N O S T I C S	$302-314$
Common causes-	
Abrasion-	303
Compression set-	304
Dieseling	305
Explosive decompression-	306
Extrusion \& nibbling	307
Hardening \& embrittlement-	308
Hole crossing damage-	309
Installation damage	310
Plasticizer extraction-	311
Spiral failure-	312
Weather \& ozone cracking-	313

OTHER OPTIONS 315-318
Square rings

U-cups-

PTFE capped seals -

$$
\text { Fluoroplastic-encapsulated O-rings- }-318
$$

Spring-energized PTFE seals

$$
318
$$

ORDERING PROCEDURE 319-337
Ordering made eas
O-ring size tables- 321-337
GLOSSARY\&ABBREVIATIONS 338-356
Glossary 339-353
Abbreviations- -354

USING THIS DESIGN GUIDE

1. REVIEW THE DISCUSSION OF MATERIAL PROPERTIES TO DETERMINE WHICH OF THESE FACTORS ARE MOST IMPORTANT TO YOUR PROJECT.
2. FOR CHEMICAL COMPATIBILITY QUESTIONS, SEE CHEMICAL COMPATIBILITY GUIDE.
3. REVIEW THE MATERIAL PROFILES.
4. FOR GENERAL INFORMATION ON SEAL DIMENSIONS, SEE THE DISCUSSION OF DIMENSIONS
5. REVIEW THE DISCUSSION OF SEAL ENVIRONMENT.
6. FOR RECOMMENDATIONS REGARDING GLAND CONSTRUCTION, SEE THE DISCUSSION OF CONSTRUCTION.
7. REVIEW THE DISCUSSION AND DIMENSIONS OF STATIC AND DYNAMIC DESIGNS.

AN O-RING PRIMER

Figure 1: Components of a Rod Gland \& a Piston Gland

Figure 2: Rod \& Piston O-rings installed

IN THE GROOVE

An O-ring seal has two essential parts: the 0 -ring and the gland. The gland consists of the machined groove into which the O-ring is installed and the mating surface to be the machined groove into whimary components of rod and piston glands are shown in Figure 1 . A seal is effected when an O-ring is squeezed between mating components, thereby creating zero clearance and preventing the escape of fluids through the clearance gap Figure 2 shows rod and piston O-rings installed. As can be seen, the groove for a rod seal is machined into the housing, whereas the groove for a piston seal is machined into the piston itself. The versatility of 0 -rings allows them to function effectively in either configuration.

AN O-RING PRIMER

AN O-RING IN ACTION

Figure 3: Installed

Figure 5: Extruded

Figure 4: Pressurized

Figure 6: Failed

SEALING YOUR FATE

To better understand how an O-ring seals, think of the O-ring as a highly viscous (thick) "fluid" with very high surface tension. When placed under pressure, the O-ring is forced to "flow" within the groove toward the clearance gap. As the 0-ring flows against (and slightly into) the gap, it produces zero clearance and prevents the sealed substance from escaping. Figures 3 through 6 illustrate this process.
In Figure 3, the O-ring has been installed but is not under pressure. In Figure 4, the 0 -ring is under just enough pressure to effect a seal. Figure 5 shows the seal under maximum pressure. The seal is extruding (extending) slightly into the clearance gap but is still functioning effectively. In Figure 6, the pressure has now exceeded the seal's capabilities, forcing it to extrude severely. A leak path forms, and the seal fails.

STAYING IN SHAPE

An important factor in the effectiveness of any O-ring is its memory, or ability to remember its shape. The molecular properties of the 0 -ring are such that it is always trying to regain its original shape despite being squeezed and/or distorted by pressure. This memory function allows a properly designed O-ring seal to block the clearance gap and prevent leakage, all the while resisting extrusion into the gap or otherwise losing its shape. Since an O-ring's memory is directly related to its chemical structure, let's take a closer look at some basic structural concepts next.
SELECTING THE
MATER|ALS

BACK TO BASICS

"A clear understanding of a few basic concepts will help you ask the most pertinent questions and find the most productive answers."

Anyone designing an O-ring seal must answer a multitude of questions. In a sense, that's really what good design work is all about: determining which questions to ask and where to fi nd the answers. Though the sealing industry has a multitude of exotic terms, a clear understanding of a few basic concepts will help you ask the most pertinent questions and find the most productive answers. To that end, here's a quick review, starting with the building block of all materials, the atom.

Figure 7: Subatomic Particles

AN ATOM IN ACTION

An atom is the smallest unit of an element that 1) retains all the element's distinctive properties and 2) can enter into a chemical reaction. In other words, anything less than an atom of carbon (C) is no longer carbon. A carbon atom can be split into its component parts (see Figure 7), but the resulting subatomic particles (positively-charged protons, non-charged neutrons, and negatively-charged electrons) do not reflect the properties of carbon. Though their number and arrangement vary from element to element, subatomic particles alone tell you nothing about the atoms from which they came. A proton from a carbon atom is identical to an oxygen (0) proton.

Subatomic particles are important, however, because they determine one of the defi ning characteristics of any atom: its atomic weight, or the total mass of the protons and neutrons within its nucleus (orbiting electrons are of negligible weight and don't figure into this total). For example, the nucleus of a hydrogen (H) atom contains one proton and no neutrons, so its atomic weight is 1 . Carbon is composed of six protons and six neutrons, for an atomic weight of 12. Each individual atom is also distinguishable by the one or more energy bonds it can form with neighboring atoms.
This ability to combine is known as valence, and the amount of valence varies with each element. For example, an atom of hydrogen has a valence of 1, meaning it can form only one such energy bond. Oxygen has a valence of 2 and carbon has a valence
of 4, meaning they can form two and four bonds, respectively. To be more precise, atoms need to form these energy bonds in order to be "satisfied" or "stable." The interaction of differing valences is what allows a group of atoms to join together into a molecule.

WATER MOLECULE

Figure 8: A Simple Inorgan Compound

MOLECULAR MATCHMAKING

The kind of molecule is determined by the exact type and number of atoms. For example, a water molecule is made up of just three atoms: two of hydrogen and one of oxygen. The components of a water molecule are most simply expressed by the wellknown chemical formula " H 2 O " or by the structural diagram: $\mathrm{H}-\mathrm{O}-\mathrm{H}$ (see Figure 8). A water molecule can be considered stable because the valences of each of its atoms are satisfied: the two hydrogen atoms have formed one bond each, and the single oxygen atom has formed the two bonds it needs.

BACK TO BASICS

When dissimilar atoms join together (as with water), the resulting molecule is called a compound. There are two major types of compounds: organic and inorganic. Generally speaking, organic compounds contain carbon and inorganic compounds do not, though a handful of carbon-containing compounds (such as metallic cyanides, carbon dioxide, carbides, and carbonates) are studied as part of inorganic chemistry. The specific way in which a molecule is formed depends on which type of compound it is. Inorganic compounds are formed when an atom gives up, or transfers, one of its orbiting electrons to a nearby atom. Thanks to the rules of valence, this electron transfer can help both the donor atom and the recipient atom become more stable. Because the carbon atom has a compact structure, it is much less inclined to give up an electron. It will, however, share an electron with a nearby atom (such as hydrogen) to attain a more stable compound. As previously stated, each atom has its own atomic weight. When atoms unite to form a molecule, the sum of these atomic weights is then known as the molecular weight. For example, a methane molecule (CH4) combines the atomic weight of one carbon atom (12) with the atomic weight of four hydrogen atoms (1×4), for a tota of one carbon atom (12) with the atomic weight of four hydrogen atoms (1×4), for a tota
molecular weight of 16 . In addition to hydrogen, oxygen, and carbon, there are a handful molecular weight of 16 . In addition to hydrogen, oxygen, and carbon, there are a handfu of other atomic elements that form the basis for the majority of raw materials used in
the sealing industry. These include nitrogen (N), fluorine (F), silicon (Si), sulfur (S), and the sealing industry. These include nitrogen (N), fluorine (F), silicon (Si), sulfur (S), and chlorine (CI). The atomic weights and valences of each of these elements are listed in Table 1.

	ELEMENT	ATOMIC WEIGHT	VALENCE (ENERGY BONDS)
	Hydrogen	1	1
	Carbon	12	4
	Nitrogen	14	3
	Oxygen	16	2
	Fluorine	19	1
	Silicon	28	4
	Sulfur	32	2
	Chlorine	35	1

Table 1: Atomic Elements Most Commonly Used as Building Blocks in the Sealing Industry

LINKS IN THE CHAIN

Small, individual molecules are known as mers, or monomers (literally, "single mers"). When conditions are right, these small molecules can chemically "link" together to form long, chainlike structures. The macromolecules (giant molecules) that result may incorporate thousands of the original monomers. These long chain macromolecules are therefore known as polymers ("many mers"). The linking process itself is called polymerization. An example of this process is shown in Figure 9. Methane monomers can combine to form ethane, and eventually, polyethylene. Rubber and plastics are polymer-based materials.

MONOMER TO POLYMER

Polyethylene
Fiqure 9: Effect of Polymerization

Changes in physical properties as a result of polymerization are largely a factor of molecular weight. When molecules (each with their own total weight) join to form a polymer, the sum of the molecular weights has a huge impact on the polymer's physical properties. As a general rule, an increase in chain length (and thus molecular weight) also means an increase in strength and viscosity (resistance to flow). Table 2 shows the effects of increased molecular weight. By adding CH2 groups, the polyethylene molecule goes from a gas (with little or no physical properties) to a liquid, then to a wax. Continued addition of molecules forms a tough solid (of relatively low molecular weight, or LMW) such as is used for plastic grocery bags, then a very tough solid (of high molecular weight, or HMW), and soon an extremely tough, solid plastic (of ultra-high molecular weight, or UHMW) used in abrasion pads and bridge bearings. No matter what its physical state, the molecule is made up of the same two elements, carbon and hydrogen, and is configured the same way. The only difference is the number of molecules (the chain length) and thus the molecular weight. Polymers with higher molecular weights are key in the formulation of high strength materials for extreme applications. In the higher molecular weights, the numbers of carbon and hydrogen atoms are ranges rather than absolute values. The HMW and UHMW polyethylene formulas in Table 2 are averages.

COMMON NAME	CHEMICAL FORMULA	MOLECULAR WT	STATE (RM TEMP)
Methane	CH_{4}	16	Gas
Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	16	Gas
Propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	44	Gas
Butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	58	Gas
Pentane	$\mathrm{C}_{5} \mathrm{H}_{12}$	72	Liquid
Kerosene	$\mathrm{C}_{17} \mathrm{H}_{36}$	240	Liquid
Paraffin Wax	$\mathrm{C}_{18} \mathrm{H}_{38}$	254	Soft Solid
Hard Wax	$\mathrm{C}_{50} \mathrm{H}_{102}$	702	Brittle Solid
LMW Polyethylene	$\mathrm{C}_{100} \mathrm{H}_{202}$	1402	Tough Solid
HMW Polyethylene	$\mathrm{C}_{70,000} \mathrm{H}_{140,002}$ (avg.)	980,002	Very Tough Solid
UHMW Polyethylene	$\mathrm{C}_{220,000} \mathrm{H}_{440,002}$ (avg.)	$3,080,002$	Extr. Tough Solid

[^0]
FORCES OF NATURE

Long polymeric chains (such as those in polyethylene) are held in place by intermolecular forces (known as van der Waals forces) and by chain entanglement (as in a bowl of spaghetti). The intermolecular forces are heat-sensitive, so that as a polymer is heated, the molecular motion increases and the attractive forces between the molecules decrease. The polymer chains can then slide past one another. Some polymers are composed primarily of linear, symmetrical molecules arranged in close proximity to one another. This proximity allows the intermolecular van der Waals forces to be at their strongest, and the polymer will thus be very rigid. These orderly polymers are said to be crystalline in structure (see Figure 10). Polyethylene plastic is a good example of a crystalline polymer. Other polymers are composed mainly of branched non-symmetrical molecules that cannot fi t closely to one another. Because of this increased distance between the molecules, the van der Waals forces will be at their weakest, resulting in a random mass of twisted and entwined polymer chains. These polymers are said to be amorphous (see Figure 11). Because their intermolecular forces are not very strong, amorphous polymers can be thought of as very viscous (thick) liquids that appear to be solids. Though it is possible to have an amorphous plastic, most plastics are either crystalline or semicrystalline. Keep in mind that it is common to see tough polymers in which the numerous crystalline segments are surrounded by a few amorphous areas (as in Figure 12). All rubbers or elastomers are amorphous at room temperature. Though the term elastomer was initially used to denote a synthetic form of natural rubber, "elastomer" and "rubber" are now more or less synonymous. To be offi cially considered an elastomer by the American Society for Testing and Materials (ASTM), a polymer must not break when stretched 100%, and it must return to within 10% of its original length within five minutes after being held for five minutes at 100\% stretch. An elastomer is perhaps best described as a viscoelastic material, in that it goes through both a viscous phase and an elastic phase. The visco-elastic behavior of elastomers can be simulated using a spring coupled with a dashpot (damper). The spring illustrates the elastic phase, and the dashpot exemplifies the viscous phase (see Figure 13).

CRYSTALLINE

Figure 10 : Linear, Symetrical
Chains
Chains

AMORPHOUS

igure 11: Random,
"COMBO" STRUCTURE

Figure 12: Crystalline Regions FIgure 12: Crystaline Regions
Surrounded by Amorphous Regions

BACK TO BASICS

VISCO-ELASTICITY

Figure 13: A Spring-dashpot combination can illustrate the visco-elastic nature of elastomers

STATE OF ENTANGLEMENT

But why is an elastomer elastic and resilient, able to undergo high strain and yet recover its original shape? Put simply, it's the tangled nature of its long molecular chains. When pressure (in the form of a compressive load or a stretching force) is applied to the elastomer, the chains rotate around their chemical bonds. This rotation tends to uncoil the entangled mass and straighten the chains. When the pressure is removed, the chains coil up again, revertin to their normal state of entanglement. This tendency to return to its original configuration helps explain an elastomer's rubbery, resilient nature.
Under certain conditions, a few elastomers will have their molecules align and form crystalline regions. In some cases, this can be advegions. In some cases, this advantageous. Natural rubber undergoes strain crystallization, meaning its entangled macromolecular chains will untangle and align to form crystals as a result of a stretching force. This tendency to strain crystallize gives natural rubber inherently good strength and fatigue properties. In other cases, the tendency to crystallize can be a distinct disadvantage. An elastomer that crystallizes due to cold temperatures becomes harder and less able to stretch.

Because many seals will face potentially detrimental service conditions (such as extreme cold or heat), an elastomer alone is seldom an effective seal material. Other ingredients must often be added to make the elastomer easier to process and to augment its physical and/or chemical traits. These other ingredients may include fillers (to reinforce or extend the material), plasticizers (to aid flexibility and processibility), cure activators and accelerators (to initiate and speed processing), inhibitors (to ensure the reaction does not proceed too quickly), anti-degradants (to help resist environmental elements like oxygen or ozone), and pigments (for colorization). The combination of a base elastomer and additives is called an elastomeric compound.

EFFECT OF VULCANIZATION

Figure 14: A 3-D Elastic Structure

MAKING CONNECTIONS

After a compound has been formulated, it must still be processed into a useful form such as an 0-ring). Under normal conditions, an elastomer's amorphous chain segments are free to move relative to one another. This is not true only when the chains meet mechanical entanglement (as with the spaghetti effect), or when the separate chains are chemically connected. Vulcanization (also known as cure) is a heat-induced process whereby the long chains of the rubber polymers are permanently crosslinked to one another, thus forming three-dimensional elastic structures (see Figure 14). Aided by curing agents (also known as vulcanizing agents) in the original compound, vulcanization transforms soft, weak, non-cross-linked materials into strong elastic products. In addition to making the compound stronger, the vulcanization process is also generally the point at which the material is molded into a useful shape that it retains due to its memory
Though every effort has been made to simplify the preceding discussion, it's important to realize that putting together an elastomeric compound can get quite complex. Decisions made in compounding will ultimately impact the processing and performance of any seals produced from the compound. Depending on the type and degree of additives in use, a single base elastomer can generate hundreds of different compounds, each with unique characteristics. Since choices made during compounding directly determine the properties of an elastomeric seal, let's look at these physical, thermal, and chemical properties next.

PHYSICAL PROPERTIES

PHYSICAL PROPERTIES

"The extent to which each of these properties is present in a given material has a huge impact on the material's ability to provide an
effective seal."

There are a number of physical properties you should consider when choosing an elastomeric compound for your O-ring application. These include hardness, tensile strength, modulus, elongation, tear resistance, abrasion resistance, compression set resistance, and resilience. The extent to which each of these properties is present in a given material has a huge impact on the material's ability to provide an effective seal.

Figure 15: IRHD Hardness Tester

HARDNESS

Typically defined as resistance to indentation under specific conditions, the hardness of an elastomer is more accurately thought of as two related properties: inherent hardness and processed hardness. As a result of chemical structure, each elastomer has its own inherent hardness. This inherent hardness can be modified (and is typically supplemented) via compounding and vulcanization. Hardness in molded rubber articles (processed hardness) is a factor of cross-link density (and the amount of fillers). The more cross-linking a given material undergoes during vulcanization, the harder the final molded part will be. When judging the potential effectiveness of a molded seal, processed hardness is one of the most common criteria in the rubber industry. Unfortunately, hardness is also one of the least consistent concepts in that the mostused measurement scales have only limited comparability. There is no single "universal hardness" unit, so it is often impossible to draw a clear and easy correlation between readings on two different scales, even when the samples being measured are absolutely identical. There are currently two hardness tests that predominate in the rubber industry: Shore durometer and International Rubber Hardness Degrees (IRHD).

Because Shore Instruments led the way in the marketing of durometer gauges, the words "Shore" and "durometer" have become virtually synonymous within the rubber industry. Nowadays companies offer a wide range of durometer scales conforming to the ASTM D 2240 standard. These scales are designed to gauge hardness in everything from textile windings to plastics to foam. Rubber hardness is most often measured via a Shore Type A or Type D durometer. Since there is more than one scale, you should always be specifi c as to which scale is being applied in a given situation, e.g. "95 Shore A" or " 46 Shore D." The full range of durometer scales and the materials they are most commonly used on are listed in Table 3. The Shore A durometer is a portable and adaptable
device which uses a frustum (truncated) cone indenter point and a calibrated steel spring to gauge the resistance of rubber to indentation. When the durometer is pressed against a flat rubber sample, the indenter point is forced back toward the durometer body. This force is resisted by the spring. Once firm contact between the durometer point and the sample has been made, a reading is taken within one second unless a longer time interval is desired. Five readings are typically taken, then an average value calculated. The amount of force the rubber exerts on the indenter point is reflected on a gauge with an arbitrary scale of 0 to 100 . Harder substances generate higher durometer numbers. A reading of 0 would be indicative of a liquid, whereas 100 would indicate a hard plane surface (e.g. steel or glass).

DUROMETER SCALE	MOST COMMONLY USED ON
Type A	All O-Ring Compounds
Type B (not commonly used)	Moderately Hard Rubber
Type C (not commonly used)	Medium Hard Rubber and Plastics
Type D	Hard Rubber; Polyurethane; Thermoplastic Elastomers (TPEs)
Type DO	High Density Textile Windings
Type 0	Sponge Rubber and Plastics; Low Density Textile Windings
Type 00	Plastic Foams
Type 000	

Table 3: Guide to Durometer Scale Selection

PHYSICAL PROPERTIES

That said, it's important to note that readings of less than 10 or more than 90 Shore A are not really considered reliable. Materials harder than 90 Shore A (e.g. some polyurethanes and plastics) are more accurately measured on a Shore Type D durometer, which utilizes a stiffer spring and a sharp 30° angle indenter point. The majority of 0 -ring materials have readings between 40 and 90 Shore A. Table 4 includes approximate conversions for several of the most-used durometer scales. Though most standard 0 -rings are either 70 or 90 Shore A, the application will always govern the necessary hardness. Softer compounds offering less resistance may be perfectly fine for low-pressure seals, but high-pressure seals will likely require a harder, more extrusion-resistant material. Making decisions about a property such as hardness often entails compromise in order to ensure the long-term usefulness of the seal. For example, a relatively hard compound may resist being extruded under high pressure, but its use can

TYPE A	TYPE B	TYPE C	TYPE D	TYPE O	TYPE OO
100	85	77	58		
95	81	70	46		
90	76	59	39		
85	71	52	33		
80	66	47	29	84	98
75	62	42	25	79	97
70	56	37	22	75	95
65	51	32	19	72	94
60	47	28	16	69	93
55	42	24	14	65	91
50	37	20	12	61	90
45	32	17	10	57	88
40	27	14	8	53	86
35	22	12	7	48	83
30	17	9	6	42	80
25	12			35	76
20	6			28	70
15				21	62
10			14	55	
5			8	45	

[^1]also lead to increased frictional buildup in dynamic seals. Increased friction leads to increased heat, which can, in turn, degrade the seal and decrease its useful life span. It is also important to realize that measuring the hardness of a rubber sample is an imprecise art (see Figure 16). Depending on both the specific gauge in use and the expertise of its operator, it is possible (even probable) that the same sample will yield two or more different readings. The rate at which the durometer is applied to the sample, the force used, the amount of time that elapses before taking the reading, and the temperature of the specimen at the time of testing can all impact a test result. For this reason, all durometer readings normally include a tolerance of ± 5 points, but sometimes even this may not be enough to fully anticipate all of the variances to be seen in testing. Technological advances have reduced many of the discrepancies, but sometimes at the expense of the simplicity and portability that initially made durometers popular. It is generally a good idea to test a given specimen several times and average the results to ensure accuracy. Despite the longstanding close association between "Shore" and "durometer," be aware that there are companies which market high-quality durometers. Microhardness testers have also been developed for use on samples that are too small or too irregularly shaped to be accurately gauged by standard durometers. The other widely-used test, International Rubber Hardness, utilizes a spherical indenter and a dial gauge calibrated in international Rubber Hardness Degrees (IRHD). All IRHD testers are designed to conform to the ASTM D 1415 standard.

Figure 16: Shore A Hardness Tester

PHYSICALPROPERTIES

TENSILE STRENGTH

Typically noted in either pounds per square inch (psi) or megapascals (MPa), tensile strength is the amount of force required to break a rubber specimen. To convert from MPa to psi, simply multiply the MPa figure by 145 . For example, 14 MPa converts to $2,030 \mathrm{psi}$. Converting from psi to MPa is just a matter of dividing the psi number by 145. To better understand tensile strength, fi rst recall that there are intermolecular forces (known as van der Waals forces) helping to hold long polymer chains in place. These forces are at their weakest when, due to structural irregularities, the molecules cannot fi t closely together, resulting in a nonregimented, amorphous structure. Some polymers, however, have their constituent molecules aligned in very regular patterns. The combination of this regularity and the intermolecular forces may be enough to "fit" the chains into a rigid, crystalline pattern. Tensile strength largely depends on an elastomer's ability to partially strain crystallize when stretched. With greater crystallization comes increased strength and resistance to stress. Natural rubber is an example of an elastomer with a very regular chain structure that strain crystallizes. As a result, natural rubber has high tensile strength. Of course, the temporary nature of strain crystallization allows natural rubber to regain its original shape once the stress is removed. An elastomer with inherently poor tensile strength, such as styrene butadiene, can be improved through the addition of highly particulate reinforcing agents. Silica and carbon black are common reinforcing agents. Be aware that the majority of dynamic applications will require an elastomeric compound with tensile strength of at least $1000 \mathrm{psi}(6.9 \mathrm{MPa})$.
Per ASTM D 412, a compound's tensile strength is generally tested using a molded dumbbell (see Figure 17). The dumbbell is placed in the grips (jaws) of a tensile tester (see Figure 18). When the tester is activated, the dumbbell is pulled steadily at a rate of 500 mm per minute until it breaks. The force being exerted on the sample at the time of rupture is said to be the sample's tensile strength. Minimum tensile strength is often used as both a qualification criterion when specifying a new material and as a contro criterion (with $a \pm 15 \%$ production tolerance) when testing batches of mixed material.

Figure 17: Molded dumbbell

MODULUS

Perhaps the best single gauge of a compound's overall toughness and extrusion resistance, modulus is the force (stress) in pounds per square inch (psi) required to produce a certain elongation (strain). This elongation might be $50 \%, 100 \%$, or even 300%, though 100% is the most widely used figure for testing and comparison purposes. Industry literature typically refers to 100% elongation as "M100" (or modulus 100). Compounds with a higher modulus are more resilient and more resistant to extrusion. Generally speaking, the harder a compound, the higher its modulus. Because it is basically a measure of tensile strength at a particular elongation (rather than at rupture), modulus is also known as tensile modulus or tensile stress.
As described in ASTM D 412, modulus is typically gauged simultaneously with tensile strength on the same dumbbell specimen shown in Figure 17. As the specimen is being stretched, the tester records the psi (for example, 836.7) needed to achieve a given elongation (for example, 100\%). This figure in psi is considered to be the sample's modulus at that elongation. Minimum modulus is typically used as a qualification criterion when specifying a new material. It can also serve as a control criterion (with a $\pm 25 \%$ production tolerance) when testing finished parts.

Figure 18: Tensile Tester

PHYSICAL PROPERTIES

ELONGATION

Elongation is the percentage increase in original length (strain) of a rubber specimen as a result of tensile force (stress) being applied to the specimen. Elongation is inversely proportional to hardness, tensile strength, and modulus. That is, the greater a material's hardness, tensile strength, and modulus, the less it will elongate under stress. It takes more force to stretch a hard material having high tensile strength and high modulus than to stretch a soft material with low tensile strength and low modulus.
Ultimate elongation is the elongation at the moment the specimen breaks. Per ASTM D 412, ultimate elongation is generally noted along with tensile strength and modulus during tensile testing. Some elastomeric materials are much more forgiving in this area than others. Natural rubber can often stretch up to 700% before breaking. Fluorocarbons typically rupture at about 300\%. Keep in mind that these figures highlight relative failure modes only and are not acceptable seal installation values.
Overstretching can doom an O-ring, so elongation is an important installation factor, especially as gland and seal dimensions decrease. What might be a small percentage increase in a larger seal can be a large increase in a smaller seal. For example, an OR150 seal has a nominal inside diameter (I.D.) of $27 / 8^{\prime \prime}$. If stretched $1 / 16^{\prime \prime}$, it is elongated roughly 2%. On the other hand, an OR-102 seal has a $1 / 16^{\prime \prime}$ nominal I.D. If stretched $1 / 16^{\prime \prime}$, it is elongated 100%. Since a given amount of elongation can mean vastly different things, elongation is truly relative to a seal's initial size. Though elongation is seldom a problem, installing small diameter, high durometer, and low elongation seals can be problematic in some instances.

Figure 19: Tensile Tester

TEAR RESISTANCE

Noted in kilonewtons per meter (kN/m) or pound force per inch (lbf/in), tear resistance (or tear strength) is resistance to the growth of a cut or nick in a vulcanized
(cured) rubber specimen when tension is applied. Tear resistance is an important consideration, both as the finished article is being removed from the mold and as it performs in actual service.
Tear resistance can be gauged via the same ASTM D 412 apparatus used in the testing of tensile strength, modulus, and elongation. As described in ASTM D 624, different specimen types can be used to measure both tear initiation (resistance to the start of a tear, see Figure 19) and tear propagation (resistance to the spread of a tear, see Figure 20). Either way, the sample is placed in the tester's grips, which then exert a uniform pulling force until the point of rupture. This force may then be divided by the specimen's thickness to arrive at the tear resistance for that particular sample. Three separate samples are typically tested and an average calculated.
Though epichlorohydrin, natural rubber, and polyurethane all have excellent tear resistance, many materials are not very strong in this area. Silicone and fluorosilicone have notably poor tear resistance. Though it might seem logical, it is in fact a common misconception that hardness automatically equals good tear resistance. Compounds whose tear resistance is less than $100 \mathrm{lbf} /$ in are most at risk for installation damage, especially in designs featuring non-smooth areas (as with burrs, slots, threads, etc.) and/or sharp, non-radiused (non-rounded) corners. Once damaged, materials with poor tear resistance will quickly fail in service. This is especially true for dynamic seals. Poor tear resistance is linked to poor abrasion resistance.

Figure 20: Slit ("Trouser") Specimen

PHYSICAL PROPERTIES

ABRASION RESISTANCE

Measured as a loss percentage based on original weight, abrasion resistance is the resistance of a rubber compound to wearing away by contact with a moving abrasive surface. Whereas the cutting or nicking of a seal's surface is an instantaneous event, abrasive rubbing or scraping is much more of a progressive phenomenon that develops over time. Seals in motion are most susceptible to abrasion. Hard compounds tend to exhibit less abrasive wear than soft compounds, but use of a harder compound can also increase friction in dynamic seals, and increased friction generates seal-degrading heat.
Because of the many potential variables (including heat fluctuation and surface contamination), abrasion resistance is hard to accurately measure. Testing typically involves the uniform application of an abrasive material (such as sandpaper) to the surface of a sample. ASTM standards describe three different abraders: D 1630 relies on a National Bureau of Standards (NBS) abrader (see Figure 21); D 2228 uses a Pico abrader (see Figure 22); and D 3389 (also known as Taber Abrasion) employs a double-head abrader and a rotary platform (see Figure 23). Regardless of the specific test method the relative amount of sample material that is lost due to abrasion is a good indication of abrasion resistance.
Generally speaking, hydrocarbon-based elastomers tend to offer better abrasion resistance than fluorocarbon elastomers. Polyurethane offers the most outstanding abrasion resistance, while carboxylated nitrile and hydrogenated nitrile offer abrasion resistance that is superior to other hydrocarbon-based elastomers.

Figure 21: NBS Abrader

Figure 22: Pico Abrader

COMPRESSION SET

Compression set is the end result of a progressive stress relaxation, which is the steady decline in sealing force that results when an elastomer is compressed over a period of time. In terms of the life of a seal, stress relaxation is like dying, whereas compression set is like death. The effects of compression set on an O-ring's cross-section can be seen in Figure 24.
Though it is very difficult to accurately quantify stress relaxation, compression set is easy to measure. ASTM D 395 details compression set testing for rubber that will be compressed in air or liquid media. Two methods are described ("A" for constant force;
"B" for constant deflection), but the basic methodology is substantially the same. Testing generally involves use of cylindrical disk compression set test buttons (12.45 mm thick by 28.96 mm diameter). In lieu of buttons, die-cut plied (stacked) samples 1.78 mm thick by 28.96 mm diameter may be substituted. The buttons or plied samples are placed between steel plates. In method A (see Figure 25), the plates are then forced together using either a calibrated spring or a pre-defined external force. In method B (see Figure 26), a bolt-tightened device and steel spacers are used. Either way, compression (normally 25% of original thickness) is held for a given time (e.g. 22 hours) at a specific temperature (e.g. $100^{\circ} \mathrm{C}$), these last two variables based on anticipated service conditions.

Figure 23: Taber Abrader

PHYSICAL PROPERTIES

After removal from the compression device and a 30-minute cooling period, the specimens are measured using a dial micrometer. Compression set can then be calculated as either a percentage of original specimen thickness or as a percentage of original deflection.
Though a high degree of compression set is to be avoided, other service variables (such as inadvertent fluid swell or the intentional application of greater squeeze) may compensate. Seals are most likely to fail when there is both high compression set and shrinkage. Table 5 shows how several of the most commonly used materials respond to increasing temperatures. For more information on compression set, see Failure Diagnostics.

Figure 24: Compression Set

Figure 25: Compression Set Test Method A

Figure 26: Compression Set Test Method B

RESILIENCE

As detailed in ASTM D 2632, resilience (also known as rebound) refers to a compound's ability to regain its original size and shape after temporary deformation. Resilience testing typically involves the dropping of a small weight onto a test specimen (such as a compression set button, see Figure 27). The extent to which the weight bounces back is then noted as a percentage of the initial drop height. A highly resilient material (one that can rapidly regain its dimensions) might engender a 70% rebound value, but values in the range of 40 to 50% are more typical for the majority of elastomers tested. Though compounding may improve an elastomer in this area, it can also detract from good resilience, which is largely an inherent property. As a general rule, resilience is most critical in dynamic seals.
As important as they are, the physical properties of a given material are not the end of the story. Chemical properties are also critical, so let's take a closer look at them next.

Figure 27: Bashore Resilience Testing

Table 5: Compression Set Increasing Temperatures

CHEMICALPROPERTIES

CHEMICAL PROPERTIES

"Because 'Iikes dissolve likes', the true key to compatibility between the seal and the fluid(s) being sealed is dissimilar
 chemical structure."

In addition to the physical properties discussed in the preceding section, there are also a couple of very important chemical properties you should consider when choosing an elastomeric compound. Primarily, the material must be chemically compatible with the substance(s) to be sealed. You must also anticipate any volume changes that the compound may undergo as a result of contact with system fluids

EVIDENCE OF INCOMPATIBILITY

Figure 28: O-rings Swell

COMPATIBILITY

As used by the sealing industry, the term compatibility refers to a seal material's resistance to having its chemical (and, by extension, its physical) properties degraded (either temporarily or permanently) as a result of contact with a liquid or gas. Because "likes dissolve likes," the true key to compatibility between the seal and the fluid(s) being sealed is dissimilar chemical structure. For example, an O-ring seal made from an oil-derived material can be severely compromised when put in contact with oils or fuels. The most likely result: excessive swelling of the O-ring, resulting in failure of the seal (see Figure 28).

In addition to being resistant to the primary system fluid, the seal must also be resistant to any and all additives which may be encountered during the course of operation. For example, oil-field applications often utilize film-forming amine inhibitors to coat tubular goods and help prevent metal corrosion. Unfortunately, amine inhibitors act as curing agents for some fluorocarbon elastomers, causing seal hardening and failure. In such an application, an O-ring would need to be resistant to the fluid(s) being sealed and to the added amine inhibitors in order to provide an effective and longlasting seal.
Even if they do not degrade the elastomeric compound directly, some fluids degrade surfaces adjacent to the seal (as with metal corrosion), thus reducing the effectiveness of the seal itself. You should also keep in mind that while some compounds formulated from a particular polymer may be okay for use in a given fluid, not all compounds of that polymer will be appropriate for use in that fluid. Since a compound's properties are a direct result of its interactive constituents (e.g. reinforcing agents, plasticizers, etc.), each unique formulation should be tested under actual service conditions to accurately determine its appropriateness for an application
There is no single ASTM test to determine "chemical compatibility" rather, compatibility is understood to be a wider concept incorporating changes (or the lack thereof) in a number of material properties, each with their own test methods. Hardness, tensile strength, modulus, and elongation can all be compromised if a compound is not compatible with (resistant to) a given fluid. Perhaps the most visible evidence of chemical incompatibility is a change in the material's volume.

VOLUME CHANGE

Volume change is either the increase (swell, as in Figure 28) or decrease (shrinkage, as in Figure 29) in the volume of a specimen which has been in contact with a fluid. This contact may range from occasional "splashing" to constant immersion. Any resulting volume change can range from minor (indicating there is a relative compatibility between the fluid and the specimen) to major (indicative of incompatibility). Volume change is typically noted as a percentage of the original volume. For example, a specimen that swells to twice its original volume is said to have undergone a 100\% increase.

EVIDENCE OF INCOMPATIBILITY

Figure 29: Shrinkage Due to Plasticizer Extraction

CHEMICAL PROPERTIES

An elastomeric seal typically becomes softer as a result of swell, whereas shrinkage generally hardens the seal. A slightly swollen seal is, in most cases, still functional. A limited amount of swell may even compensate for other variables, such as compression set. Shrinkage, on the other hand, can exacerbate an already-existing compression set problem. With some of its soluble components (such as plasticizer) having been extracted by system fluid, an O-ring seal that has undergone shrinkage is more prone to leaks. As described in ASTM test method D 471, volume change testing typically employs ASTM and Industry Reference Material (IRM) oils, as well as ASTM Reference Fuels, service liquids, and Type IV Reagent Water. Regardless of the liquid in use, testing involves immersing a material sample (of known properties) in the liquid for a specific period of time (e.g. 70 hours) at a specific temperature (e.g. $100^{\circ} \mathrm{C} \pm 2^{\circ}$), both variables based on the conditions expected in service. Material deterioration (if any) is then determined based on changes in physical properties, including volume.

CHEMICAL COMPATIBILITY GUIDE

```
"This guide features over 2,ooo different fluids (liquids, gases, and
    solids) that your O-ring seals may encounter in service."
```

To help you better gauge the usefulness of a seal material in a given fluid environment we have compiled this Chemical Compatibility Guide. It features over 2,000 different fluids (liquids, gases, and solids) that your 0-ring seals may encounter in service This guide is based on volume swell, and though excessive swell is perhaps the most obvious sign of incompatibility, it is not the sole indicator. Changes in physical properties such as hardness and tensile strength are common. Length of exposure and ambient temperature will also undoubtedly affect a material's response to a chemical.

This information is provided for educational purposes only. It has been accumulated from multiple industry publications and authorities. To the best of our knowledge, it is complete and correct. NewDealSeals has not performed any tests or analysis to verify the data contained herein, and the information contained herein is not intended as, and shall not serve as, any warranty or representation, either expressed or implied. The use is solely responsible for making any and all usage decisions. These decisions should always be based on both an appropriate analysis of the information and a thorough testing of the products prior to actual field use.

CHEMICAL COMPATIBILITY RECOMMENDATION

Excellent: No more than 15\% swell. Any softening or surface degradation is minimal. Material should perform well in all but the most extreme conditions.

Good: Up to 30\% swell. Minor softening or surface degradation is likely, though static applications may not be jeopardized.

Poor: Up to 50\% swell. Chemical resistance is definitely compromised, making the material unsuitable for some static and many dynamic applications.

000
Not recommended: More than 50\% swell. Major softening and material degradation are very likely. Usage should be avoided and an alternative material sought.

No data available: Material response is unknown. Testing prior to

- actual usage is needed to determine compatibility in a given environment.

								$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { जn } \end{aligned}$				$\begin{aligned} & \text { 岂 } \\ & \text { 咅 } \\ & \text { 몽 } \\ & \text { 롱 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Abietic Acid	－	－	－•••	－•••	－•••	－•••	－•••	－	－	－	－•••	－	－	－	－	－	－
Acetaldehyde	－00•	－＊••	$\bigcirc 00 \cdot$	$\bigcirc 00$－	－0．•	－•••	－00•	－＊••	$\bigcirc 00 \cdot$	－0．•	－•••	－00•	$\bigcirc 0 \cdot$	－00•	$\bigcirc \bigcirc$	－•••	－＊••
Acetamide	$\bullet \bullet \bullet$	－＊••	$\bigcirc \bullet \bullet$	－$\bullet \bullet$	－＊••	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bigcirc 0 \cdot \bullet$	－•••	－＊••	－＊••	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$－	－0．•	$\bullet \bullet \cdot$	$\bigcirc \bullet \bullet$	－00•
Acetanilide	－	－	－0．•	－0．•	－听	－0••	－＊••	－	－	－0．•	－＊．•	－	－	－	－	－	－
Acetate of Lime	－＊＊＊	－•••	$\bigcirc 0 \cdot \bullet$	－	－	．	－	－＊＊	．	－	－	－＊••	－	－	－	－	－•••
Acetic Acid，30\％	－＊．．	－．．．	－0．•	－	－	－	－	$\bullet \bullet \bullet \bullet$	－＊•	－	－＊••	－•••	${ }^{\circ} 0 \cdot$	－＊＊	－	$\bigcirc \bullet \bullet$	－＊＊
Acetic Acid，Glacial	－0．•	－＊．•	$\bigcirc 00$－	$\bigcirc 0$.	$\bigcirc 00$－	－0．	－00•	－＊．•	$\bigcirc 00 \cdot$	－＊．•	－．．．	－＊．＊	$\bigcirc 0 \cdot$	－＊••	－0••	－＊＊	－
Acetic Acid，Hot	－	－	－	－	－	－	－	$\bigcirc 00 \cdot$	－0．	－＊．•	－	－＊．．	－0．	$\bigcirc 0$.	$\bigcirc \bullet \bullet$		－0．0
Acetic Anhydride	००••	－＊．	－0．	－0．	－0．	－0．	－0．0	－०．•	－0．		－•••	$\bigcirc 0 \cdot$	$\bigcirc \bigcirc \cdot$	－＊．＊	－•••	－＊．	－＊•
Acetic Ester	－००॰	－．．．	－0．	－	－	－	－	－＊．•	－	－	－	$\bigcirc 0 \cdot$	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc \bullet$	$\bigcirc \bigcirc$	．	$\bigcirc \bullet \bullet$
Acetic Oxide	००••	－＊••	－0．	－	－	－	－	－	$\bigcirc \bigcirc \bullet$	－	－	－•••	－•••	－	－	－	－＊••
Acetoacetic Acid	－0．•	－	－0．	－0．	$\bigcirc 0 \cdot$－	－00•	－००॰	－	－	－०．॰	－•••	－•••	－	－	－	－＊．•	－＊••
Acetone	－0．	－．．．	－0．\bullet	$\bigcirc 0$.		－0．\bullet	－00•	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$	$\bigcirc 0$.	－．．．	－0．	${ }^{\circ} 0 \cdot$	－0．•	－0．•	$\bullet \bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$
Acetone Cyanohydrin	－00•	－．．．	－0．\bullet	$\bigcirc 0$.	$\bigcirc 0 \cdot$	－0．\bullet	－00•	－＊．•	．	－०．•	－．．．	－＊••	$\bigcirc 00$		－	$\bullet \bullet \bullet$	－0••
Acetonitrile	－о••	－•••	－00•	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot \bullet$	－00•	－00•	－	－	－	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊••
Acetophenone	－00•	－．．．	$\bigcirc 00$	$\bigcirc 00$－	$\bigcirc 00$	－00•	－00•	－0．		$\bigcirc 00$－	－．．．	－0．	－00•	$\bigcirc 0 \cdot$	－००．	$\bigcirc \bullet \bullet$	－0••
Acetyl Acetone	－00•	－．．．	$\bigcirc 00$－	$\bigcirc 00$－	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot$－	－00•	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	${ }^{\circ} \bullet$	－•••	－00•	${ }^{\circ} \bullet$	$\bigcirc 0 \cdot$	－0＊	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$
Acetyl Acetonic	－0．\bullet	－．．．	－0．	－	－	－	－	－	－	－	－	－00•	${ }^{\circ} 0 \cdot$	－	－	－	－
Acetyl Bromide	－00•	$\bigcirc 0$.	－	－	－	－	－	－	－	${ }^{\circ} \bullet$	－•••	－00•	$\bigcirc 0 \bullet$	－	$\bullet \bullet \bullet$	－	－
Acetyl Chloride	－००॰	－०．•	－•••	－．．．	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$		－•••	$\bigcirc \bigcirc \bullet$	－．．．	－00•	$\bigcirc 0 \cdot$		$\bullet \bullet \bullet$		${ }^{\circ} \mathrm{O} \bullet$
Acetyl Oxide	－०••	－．．．	－0．	－	－	－	－	－	－	－	－	－＊••	－	－	－	－	$\bullet \bullet \bullet$
Acetyl Propane	－००॰	$\bigcirc \bullet \bullet$	$\bigcirc 0$.	－	－	－	－	－	－	－	－	－0．	－	－	－	－	－＊••
Acetylene Tetrabromide	${ }^{\circ}$－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$		$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	$\bullet \bullet \bullet$	－＊••	$\bigcirc 00$－	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－00•
Acetylene Tetrachloride	－0．\bullet	－0．	－．．．	－．．．	－．．．	－•••	－•••	－	－．．．	$\bigcirc 0$.	－	－00•	－	－	$\bullet \bullet \bullet$	$\bigcirc 00 \bullet$	${ }^{\circ} 0 \cdot$
Acetylene，Gas	$\bullet \bullet \bullet \bullet$	－•••	－＊＊	$\bullet \bullet \bullet \bullet$	－＊＊	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－＊＊	${ }^{\circ} \bullet \bullet$	－＊••	$\bullet \bullet \bullet \bullet$	－＊••	$\bigcirc \bullet \bullet$	－0••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－＊＊＊
Acrolein	－0••	$\bullet \bullet \bullet$	${ }^{\circ} \bullet$	${ }^{\circ} \bullet$		${ }^{\circ} 0 \cdot$	${ }^{000}$ •	－	－	$\bigcirc \bullet \bullet$	－＊••	－0••	－00•	－0••	－	$\bullet \bullet \bullet$	－＊＊
Acrylic Acid	－＊••	$\bigcirc \bullet \bullet$	${ }^{\circ} \bullet$		${ }^{\circ} \bullet$	${ }^{\circ} \bullet \bullet$	$\bigcirc 0 \cdot \bullet$	－	－	$\bigcirc \bullet \bullet$	－＊••	－	－	－	$\bigcirc \bigcirc$	－	－
Acrylonitrile	－00•	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	$\bigcirc 0 \bullet$	$\bigcirc 0 \cdot$	$\bigcirc 0 \bullet$	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	$\bigcirc \bigcirc$	$\bigcirc 0 \cdot$	－＊．•	－0．	－00•	－0••	$\bullet \bullet \bullet$	－0．	－०••

								$\begin{aligned} & \text { 山 } \\ & \text { U } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { O} \\ & \text { 訁 } \\ & \text { O} \\ & 0 \\ & \vec{Z} \end{aligned}$			$\begin{aligned} & \text { 岂 } \\ & \text { 品 } \\ & \text { 응 } \\ & \text { 롱 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Adipic Acid	－•••	－＊••	－•••	－•••	－•••	－＊••	－•••	－	－•••	－•••	－•••	－＊＊＊	－	－	－•••	$\bigcirc 0 \bullet$	－•••
Aero Lubriplate	－＊＊＊	$\bigcirc 0$.	－．．•	－＊••	－．．•	－．．•	－．．•	$\stackrel{\bullet \bullet}{ }$	－＊••	－＊＊＊	－．．．	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊•	－＊．＊	－0．•	－००॰
Aero Shell 17 Grease	－＊＊＊	$\bigcirc 0 \cdot$－	－＊••	－＊••	－＊＊	－•••	－＊＊	－•••	－＊••	－＊••	－•••	－＊••	$\bullet \bullet \bullet$	－00•	－•••	$\bigcirc 0 \cdot$－	－00•
Aero Shell IAC Grease	－•••	$\bigcirc 0 \cdot$	－．．．	－．．．	－．．．	－．．．	－．．．	－＊••	－．．．	－．．．	－．．．	－＊．•	－•••	－00•	－•••	－0．	－0．•
Aero Shell 750 Grease	－＊••	－0．	－．．．	－．．．	－＊．•	－＊＊＊	－＊．•	－＊••	$\bigcirc 00 \cdot$	－．．．	－•••	$\bigcirc 0 \cdot$ •	－00•	$\bigcirc 00 \bullet$	$\bullet \bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－＊••
Aero Shell 7A Grease	$\bullet \bullet \bullet$	－0．	$\bullet \bullet \bullet$		$\bullet \bullet \bullet$	－$\cdot \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$		$\bullet \bullet \bullet$	－0．•	－00•					
Aerosafe 2300	$\bigcirc 00 \cdot$	－＊．•	$\bigcirc 00 \bullet$	－00•	－00•	－	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \bullet$	$\bigcirc 0 \cdot \bullet$	$000 \cdot$	－$\cdot \bullet$	－00•	－00•	－00•	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	－00•
Aerosafe 2300w	$\bigcirc 0 \cdot$	－•••	－००	○○•	－0．•	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$－	－0．•	－0．•	○○•	－•••	－0．	$\bigcirc 0 \cdot$	－0．•	－＊．．	－＊••	－००॰
Aerozene 50	$\bigcirc 0 \cdot \bullet$	－．．．	$\bigcirc 0 \cdot$－	$\bigcirc \bigcirc \bigcirc$	$\bigcirc 00 \bullet$	$\bigcirc 00 \cdot$	－0．	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot \bullet$	－＊．	－．．．	$\bigcirc 0 \cdot$－	$\bigcirc 00 \cdot$	－00•	－•••	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$
Air $<200^{\circ} \mathrm{C}$	$\bullet \bullet \bullet$	－$\cdot \bullet$	$\bullet \bullet \cdot \bullet$		－•••	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \cdot$	－०••						
Air， $100-150^{\circ} \mathrm{C}$	－•••	－•••	．	．	－	．	．	－•••	－•••	－0．•		－•••	－0••	－0．•	－＊．．	－•••	－
Air，200－260 ${ }^{\circ} \mathrm{C}$	$\bigcirc 0 \cdot$		－	－	－	－	－	－	－0．		－	$\bigcirc 00 \cdot$	－00•	－००•	－	$\bigcirc 0 \cdot$	－
Aldehyde	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet \bullet$	－00•	－	－	－	－	$\bullet \bullet \bullet$	－	－	－	－0．＊		－	－	－$\bullet \bullet$	－0••
Alkazene	－00•	－0．	$\bullet \bullet \bullet$	－•••	－．．．	－＊•	－．．．	－0••	$\bigcirc \bullet \bullet$	－0．	－•••	－0．•	－00•	－00•	－＊＊	－0．•	－00•
Alkenes（Olefin Hydrocarbons）	$\bullet \bullet \bullet \bullet$	$\bigcirc 00 \cdot$	－＊．	－．．．	－．．．	－＊＊	－＊．＊	$\bigcirc \bullet \bullet$	－．．．	－•••	－．．．	－00•	$\bullet \bullet \bullet$	－＊••	－	－0．	－00•
Alkyl Acetone	－0．0	－•••	－•••	－•••	－•••	－•••	－•••	－＊••	－．．．	－0．•	－．．．•	$\bullet \bullet \bullet$	$\bigcirc 00 \cdot$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Alkyl Alcohol	－•••	$\bigcirc 0$.	$\bigcirc 00 \cdot$	－00•	$\bigcirc 0 \cdot$－	$\bigcirc 00 \cdot$	$\bigcirc 00 \cdot$	－＊••	－．．．	－．．．	－•••	$\bigcirc 00 \cdot$	－•••	－．．．	－	－0．	－00•
Alkyl Amine	－＊．•	$\bigcirc 00$－	$\bigcirc 0 \cdot$－	－＊•	－•••	${ }^{\circ} \cdot \stackrel{ }{ }$	$\bullet \bullet \bullet$	－＊••	－．．．	－．．．	－．．．	$\bigcirc 0 \cdot$	－•••	－＊．＊	－	－0．	－0．•
Alkyl Aryl Sulfonics	－•••	$\bigcirc 0 \cdot$－	－•••	－	－	－	－	$\stackrel{\bullet \bullet}{ }$	－＊＊	－．．．	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	$\bigcirc 0 \cdot$－	－00•
Alkyl Benzene	－0．0	$\bigcirc 0$.	－．．．	－＊．•	－．．•	－＊••	－．．．	${ }^{\circ} \stackrel{\bullet}{ }$	$\bullet \bullet \bullet \bullet$	－＊•	－	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot \bullet$	$\bigcirc \bigcirc \bigcirc$	－＊•	－	－
Alkyl Chloride	－＊＊	$\bigcirc 0 \cdot$－	$\stackrel{\bullet \bullet}{ }$	－．．．	－•••	$\stackrel{\bullet \bullet}{ }$	－．．•	－	$\stackrel{\bullet \bullet}{ }$	－．．．	－．．．	$\bigcirc 0 \cdot$	${ }^{\circ} \bullet \bullet$	－0．•	－	－0．•	－00•
Alkyl Napthalene Sulfonic Acid	－．．．	$\bigcirc 0 \cdot$	－听	－．．．	－．．．	－＊••	－．．．	－＊•	－．．．	－．．．	－．．．	$\bigcirc 0 \cdot$	－•••	－＊．•	－	$\bigcirc 0 \bullet$	－${ }^{\bullet}$
Alkyl Sulfide	－＊••	$\bigcirc 0$.	－．．．	－	－	－	－	－	$\stackrel{\bullet \bullet}{ }$	－＊••	－•••	$\bigcirc 0 \cdot$－	${ }^{\circ} \bullet \bullet$	－0．0	－	$\bigcirc 0 \cdot$－	${ }^{0} 0 \bullet$
Allyl Chloride	－＊．	$\bigcirc 00$－	－＊．	－	－	－	－	$\bullet \bullet \bullet$	$\bigcirc 0$.	－＊＊	－${ }^{\bullet \bullet}$	${ }^{\circ} 0 \cdot$	－	－•••	$\bullet \bullet \bullet$	－	${ }^{\circ}$－
Allylidene Diacetate	${ }^{\circ} \bullet \bullet$	－＊＊•	－0••	－	－	－	－	${ }^{\bullet \bullet \bullet}$	－${ }^{\bullet \bullet}$	$\stackrel{\bullet \bullet}{ }$	－${ }^{\bullet \bullet}$	－＊＊＊	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－＊••
Alpha Picolene	－0．•	－．．．	－0．•	－	－	－	－	－＊••	－．．．	－0••	－．．．	－．．．	$000 \cdot$	$\bullet \bullet \bullet$	－	－•••	－•••
Aluminum Acetate	${ }^{\circ} 0 \cdot 0$	－．．．	$\bigcirc 00 \cdot$	－00•	－00•	－00•	$\bigcirc 0 \cdot$－	$\bigcirc 00 \cdot$	${ }^{\circ} \bullet$	${ }^{\bullet \bullet \bullet}$	－•••	$\bigcirc \bullet \bullet$	${ }^{\circ} 0 \cdot$	$\bigcirc \bullet \bullet$	－＊＊	－＊•	－＊••
Aluminum Ammonium Sulphate	－＊••	－＊••	－$\bullet \bullet$	－	－	－	－	－	－	－•••	－	${ }^{\bullet \bullet \bullet}$	－	－	－	－	－＊••

		$\begin{aligned} & \text { 岂 } \\ & \text { 岂 } \\ & \text { O} \\ & \text { ㅁ } \\ & \text { 山己 } \\ & \text { 己 } \\ & \text { 조 } \\ & \end{aligned}$						$\begin{aligned} & \text { 岂 } \\ & \text { UU } \\ & \text { ज } \end{aligned}$				岂 营 응 곤					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Aluminum Bromide	$\bullet \bullet \bullet$	－•••	－•••	－•••	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	－•••	－＊••	－0••	－•••	－•••	－•••	－•••
Aluminum Chlorate	－	－	－	－	－	－	－	－	－	－०••	－•••	－	－	－	－	－	－
Aluminum Chloride	－•••	－．．•	－•••	－．．•	－•••	－•••	－•••	－＊＊	－．．•	－•••	－•••	－＊＊	$\bigcirc \bullet \bullet$	－•••	－•••	－•••	－•••
Aluminum Fluoride	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－$\bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－$\bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bigcirc 0 \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊••
Aluminum Formate	－00•	．	－0．\bullet	－00•	$\bigcirc 00 \cdot$	$000 \cdot$	．	－	－	$\bigcirc \bullet \bullet$	－	－	－	－	－	－•••	${ }^{\circ} \mathrm{O}$－
Aluminum Hydroxide	－．．．	－$\bullet \bullet$	－$\bullet \bullet$	－$\bullet \bullet$	－•••	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	－＊．•	－＊．．	－•••	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－＊．．	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$
Aluminum Linoleate	－	－	－	－	－	－	．	－	－	－•••	－	－	．	－	－	－	．
Aluminum Nitrate	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$						
Aluminum 0xalate	－	－	－	－	－	－	－	－	－	$\bigcirc \bullet \bullet$	－•••	－	－	－	－	－	－
Aluminum Phosphate	－•••	－．．．	－．．．	－．．．	－．．．	－．．．	－•••	－•••	－	－．．．	－．．．	－＊．•	－	－•••	－•••	－•••	－•••
Aluminum Potassium Sulfate	－•••	－．．．	－．．．	－．．．	－．．．	－•••	－•••	－•••	－．．．	－•••	－•••	－＊．•	－	－＊．＊	－	－•••	－•••
Aluminum Salts	－•••	－．．．	－．．．	－．．．	－．．．	－．．．	－•••	－•••	－．．．	－•••	－．．．	－＊．＊	－0••	－•••	－•••	－•••	－．．．
Aluminum Sodium Sulfate	－•••	－．．．	－．．•	－．．．	－．．．	－•••	－•••	－•••	－	－००．	－•••	－＊．•	－•••	－	－．．．	－•••	－•••
Aluminum Sulfate	－•••	－．．．	－．．．	－．．．	－．．．	－．．．	－•••	－•••	－．．•	－•••	－•••	－＊．	－＊•	－＊．＊	－•••	－•••	－•••
Ammonia Liquid	－•••	－．．．	$\bigcirc 00 \cdot$	－0．${ }^{\circ}$	－0．•	－00•	－0．•	－＊．＊	$\bigcirc 00 \cdot$	－＊．．	\wedge	－．．．	－00•	$\bigcirc 00 \cdot$	－0．•	－•••	－00•
Ammonium Acetate	－•••	－．．．	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot \bullet$	$\bigcirc 00$	$\bigcirc 00 \cdot$	．	－	००．	－•••	－．．．	－0．•	－	－	－	－०．•
Ammonium Alum	－••	－＊•	－＊••	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet \bullet$	－	－	－	－	－•••
Ammonium Arsenate	－	－	－	－	－	－	－	－	－	－०．७	－•••	－	－	－	－＊＊	－	－
Ammonium Benzoate	－	－	－	－	－	－	－	－	－	－0••	$\bullet \bullet \bullet \bullet$	－	－	－	－	－	－
Ammonium Bicarbonate	$\bullet \bullet \bullet$	－＊•	$\bigcirc 0 \cdot$		$\bigcirc 0$.	${ }^{\circ} 0 \cdot$		－	－	－0••	－•••	$\bullet \bullet \bullet$	－0••	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊••
Ammonium Bifluoride	$\bullet \bullet$.	－．．．	－•••	－．．．	－．．．	－•••	$\bullet \bullet \bullet$	－	－	－	－•••	$\bigcirc 0 \cdot$	－	－	－	${ }^{\circ} 0 \cdot 0$	－＊••
Ammonium Bromide	－	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	－•••	－	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－
Ammonium Carbamate	－	－	－	－	－	－	－	－	－	${ }^{\circ} \bullet \bullet$	－＊＊＊	－	－	－	－	－	－
Ammonium Carbonate	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$		$\bullet \bullet \cdot \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－$\bullet \bullet$	－	－0॰•	－＊＊＊	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	－＊••
Ammonium Chloride	－••	－．．．	－．．•	－．．．	－•••	－•••	－•••	－0••	－०．॰	－•••	－＊＊	－＊．＊	－••	$\bullet \bullet \bullet$	－＊••	－•••	－＊••
Ammonium Chromic Sulfate	－•••	－	－	－	－	－	－	－	－	\checkmark	－	－＊＊	－	－	－	－•••	－＊••
Ammonium Dichromate	$\bullet \bullet \bullet$	－＊••	－	－	－	－	－	－	－	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet$	－＊＊	－	－	－	$\bullet \bullet \bullet$	－＊••
Ammonium Diphosphate	－•••	－＊．•	－•••	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	－•••	－•••	－	००•	－	－＊．•	－	－	－	－．．．	－•••

								$\begin{aligned} & \text { 岂 } \\ & \text { OU } \\ & \text { ज } \end{aligned}$				岂 营 응 곤					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Ammonium Fluoride	－＊••	－＊＊	－•••	－•••	－•••	－＊＊	－•••	－	－	－•••	－•••	－＊••	－	－	－＊••	－•••	－＊••
Ammonium Fluoride Acid	－	．	－	－	－	－	－	－	－	－००．	－	－＊＊	－	－	－	$\bigcirc 0 \cdot$	
Ammonium Fluorosilicate	－	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－•••	－	－
Ammonium Formate	－	－	－	－	－	－	－	－	－	－०•	－＊．．	－	－	－	－	－	－
Ammonium Hydrate	$\bullet \bullet \bullet$	－	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－•••	$\bullet \bullet \bullet \bullet$
Ammonium Hydroxide	$\bigcirc 0$.	－．．•	－0．•	－＊••	－．．•	$\bigcirc 0 \cdot \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－0．＊	－•••	－0．0	－00•	$\bigcirc 0 \cdot$－	－•••	－•••	－०．0
Ammonium Hyposulphite	－•••	－＊．•	－•••	－	－	－	－	－	－	－	－	－•••	－	－	－	－•••	－•••
Ammonium lodide	－	－	－	－	－	－	－	－	－	－•••	－•••	－	－	－	－＊．．	－	－
Ammonium Lactate	$\bigcirc \bigcirc \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－0••	－	－	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	－•••	$\bullet \bullet \bullet$		$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Ammonium Metaphosphate	$\bullet \bullet$.	－．．．	－．．．	－	－	－	－	－	－	－०•	－•••	－．．．	－	－	－	－＊••	－•••
Ammonium Molybdentate	$\bigcirc \bigcirc \bullet$	－＊．•	－0．0	－	－	－	－	$\bigcirc \bullet \bullet$	－•••	－0．•	－•••	－．．．	－0．	－•••	－	－•••	－•••
Ammonium Nitrate	－•••	－．．．	－．．．	－．．．	－•••	$\bullet \bullet . \bullet$	－•••	－0．\bullet	－0．•	－•••	－•••	－．．．	－	－•••	－•••	－•••	－•••
Ammonium Nitrite	－•••	－．．•	－$\bullet \bullet$	－．．•	－•••	$\bullet \bullet \bullet$	－•••	$\bigcirc \bullet \bullet$	－	－•••	－•••	－•••	$\bullet \bullet \bullet$	－•••	－＊．＊	－•••	－＊••
Ammonium Oxalate	．	－．．•	．	．	－	－	．	－	－	－0．•	－•••	－＊．•	－	－	－•••	－	－
Ammonium Perchlorate	－	－	－	－	－	－	－	－	－	－0．•	－＊＊＊	－	－	－	－＊••	－	－
Ammonium Persulfate	$\bullet \bullet$.	$\bigcirc \bullet \bullet$	－•••	－．．•	－•••	$\bullet \bullet$.	$\bullet \bullet$.	－00•	－•••	－0．	－•••	－0．	－00•	－00•	－．．．	－•••	－•••
Ammonium Phosphate	－•••	－．．．	－．．．	－．．•	－•••	－•••	－•••	－•••	－0．	－•••	－•••	－＊＊	$\bigcirc \bullet \bullet$	－•••	－＊．．	－•••	－•••
Ammonium Phosphate，Dibasic	－•••	－．．．	－．．．	－．．．	－．．．	－．．•	－•．•	$\bullet \bullet \bullet$	－	－＊＊	－＊＊	－•••	－	－•••	－＊＊	－•••	－＊••
Ammonium Phosphate，Monobasic	－•••	－．．．	－•．•	－．．．	－•••	－．．•	－•••	－•••		－•••	－	－．．．	－＊•	－•••	－＊．．	－•••	－•••
Ammonium Phosphate，Tribasic	－•••	－．．．	－．．．	－．．．	－．．．	－．．．	－•••	－•••	－	－•••	－	－0．0	－	－•••	－．．．	－•••	－＊．•
Ammonium Salts	－•••	－$\cdot \bullet$	－．．．	－．．．	－＊•	－0．•	－＊••	－•••	－0••	－•••	－•••	－•••	－	－•••	－•••	－•••	－•••
Ammonium Sulfamate	－	－	－0．0	－0．	－0．\bullet	${ }^{\circ} 0 \cdot 0$	－0．0	－	－	－0．•	－．．．	－	－	－	－	－	－
Ammonium Sulfate	－•••	－•••	－•••	－．．．	－•••	$\bigcirc \bullet \bullet$	－•••	$\bullet \bullet \bullet$	－•••	－•••	－•••	－•••	－•••	－＊•	－•••	$\bullet \bullet \bullet$	－•••
Ammonium Sulfide	－•••	－．．•	－嘍•	－＊．．	－．．•	－＊．•	－•••	－	－	－•••	－•••	－．．．	－＊•	－＊••	－•••	－•••	－•••
Ammonium Sulfite	－•••	－．．．	－．．•	－•••	－．．．	－•••	－•••	－	－	－0．७	－．．．	－•••	－	－•••	－	－•••	－•••
Ammonium Thiocyanate	－•．．	－．．．	－．．．	－．．．	－．．．	－．．．	－•••	－	－	－0．•	－．．．	－．．．	$\bigcirc \bullet \bullet$	－	－	－	－＊••
Ammonium Thiogly colate	－	－	－	－	－	－	－	－	－	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－	－	－	－	－	－
Ammonium Thiosulfate	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－0••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$

								$\begin{aligned} & \text { 岂 } \\ & \text { OU } \\ & \text { ज } \end{aligned}$				$\begin{aligned} & \text { 岂 } \\ & \text { 落 } \\ & \text { 음 } \\ & \text { 론 } \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { 位 } \\ & \text { 山 } \\ & \stackrel{y}{2} \\ & \text { ㅁㅁ } \end{aligned}$				
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Ammonium Tungstate	－	－	－•••	－•••	－•••	－•••	－•••	－	－	－0••	－•••	－	－	－	－	－	－
Ammonium Valerate	－	－	－	－	－	－	－	－	－	－0••	－•••	－	－	－	－	－	－
Amyl Acetate	－0．	－＊．•	$\bigcirc 00 \cdot$	－	－0••	－	－$\bullet \bullet$	－00•		－00•	－•••	$00 \cdot$	－00•	－		－＊••	－
Amyl Acetic Ester	$\bigcirc 0 \cdot$	－＊．＊	$\bigcirc 0 \cdot$	－	－	－	－	－00•	－	－	－	$\bigcirc 0 \cdot$－	－	－	－	－	－०••
Amyl Acetone	$\bigcirc 0 \cdot$	－	－00•	－	－	－	－	－	－	－	－	－	－	－	－	－	－00•
Amyl Alcohol	－•••	－＊．•	－．．．	－0．	－．．•	－＊•	－•••	$\bigcirc \bigcirc \bigcirc$	－•••	－＊．．	－•••	－＊••	$\bigcirc 0 \cdot$	－＊．•	－•••	－•••	－•••
Amyl Borate	－•••	${ }^{\circ} 0 \cdot$	－•••	－＊．•	－＊．•	－•••	－•••	－00•	－	－＊••	－•••	－•••	－	$\bigcirc 00 \cdot$	－•••	${ }^{\circ} 0 \cdot$	－00•
Amyl Bromide	$\bigcirc 0 \cdot$	$\bigcirc \bigcirc$	－＊．•	－	－	－	－	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－	－	－	$\bigcirc 0 \cdot$	－00•
Amyl Carbinol	－	－0••	－＊••	－	－	－	－	－＊••	－	－＊••	－	－•••	－00•	－	－	－＊••	－＊•
Amyl Chloride	－0．	－0．•	－．．．	－•••	－•••	$\bullet \bullet \bullet$	－•••	－००॰	－＊••	－•••	－•••	$\bigcirc 0 \cdot$－	－०••	－००	－•••	$\bigcirc 00 \cdot$	－००॰
Amyl Chloronaphthalene	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	－＊．•	－＊．•	－＊．•	－•••	－•••	$\bigcirc 0 \bullet$	－＊．	－0．	－•••	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	－•••	$\bigcirc 0 \cdot$	－00•
Amyl Ether	－0．•	$\bigcirc \bigcirc$	－	－	－	－	－	－	－	－	－	－	－	－	－	$\bigcirc 0 \cdot$	－00•
Amyl Hydrate	－＊••	－	－	－	－	－	－	－0．－	$\bullet \bullet \bullet \bullet$	－	－	$\bullet \bullet \bullet$	－	－	－	－	－•••
Amyl Hydride	－•••	$\bigcirc 00$－	－＊．	－	－	－	－	－0．•	－•••	－	－	$\bullet \bullet \bullet$	－	－0．•	－	－0．•	－00•
Amyl lodide	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot \bullet$	－	－	－	－	－	－	－	－0．	－	－00•	－	－	－	$\bigcirc 0 \cdot$－	－
Amyl Laurate	－	－	－$\cdot \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－	－	－	－	－	－	－
Amyl Mercaptan	$\bigcirc \bullet \bullet$	－0．	－．．•	－			－	－	－＊••	－＊＊	－•••	－0．		$\bigcirc 0 \cdot$	－	－0．	－00•
Amyl Naphthalene	－0．	$\bigcirc 00$	－．．．	－．．．	－•••	－•••	$\bullet \bullet \bullet$	$\bigcirc \bigcirc \bullet$	－•••	－0．0	－．．．	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot \bullet$	${ }^{\circ} \stackrel{0}{ }$	－＊．	－0．	－00•
Amyl Nitrate	$\bullet \bullet \bullet$	－＊•	－	－	－	－	－	－	－	－०••	－•••	－	－	－	－	－	－
Amyl Nitrite	－	－	－	－	－	－	－	－	－	－0••	－•••	－	－	－	－	－	－
Amyl oleate	$\bigcirc \bullet \bullet$	－	－	－	－	－	－	－00•	－	－	－	－	－	－	－	${ }^{\circ} \bullet$	${ }^{\circ} 0 \bullet$
Amyl Phenol		－	－	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－	－	－	－	－	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \bullet$
Amyl Phthalate	$\bigcirc 00 \bullet$	－	$\bigcirc 0 \cdot \bullet$	－	－	－	－	－	－	－	－	－	－	－	－	－•••	${ }^{\circ} 0 \bullet$
Amyl Propionate	－	－	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－	－	－
Amylene	－＊••	$\bigcirc 0 \cdot$	－．．•	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet \bullet$	－	－	－	$\bigcirc 00 \cdot$	－00•
AN－0－3 Grade M	$\bullet \bullet \bullet$		－．．．	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	${ }^{\bullet \bullet} \cdot$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet \bullet$	${ }^{\circ} \stackrel{\bullet}{ }$	${ }^{\circ} 0 \cdot$
AN－0－366	$\bullet \bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	－＊＊	－	－	－	－	－00•	－•••	－＊＊＊	$\bullet \bullet \bullet \bullet$	－＊•	－•••	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet \bullet$	－0．	－00•
AN－0－6	$\bullet \bullet \bullet$	${ }^{\circ} \stackrel{\bullet}{ }$	$\bullet \bullet \bullet$	－00•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bigcirc 00 \cdot$	$\bullet \bullet \bullet$	－00•	－00•				

												$\begin{aligned} & \text { 岂 } \\ & \text { 营 } \\ & \text { 응 } \\ & \text { 롭 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
AN－W－0－366B Hydraulic	－•••		－•••	－	－	－	－	－00•	－•••	－•••	－	－•••	－0••	－0．•	－•••	${ }^{\circ} 0 \cdot$	${ }^{\circ} \mathrm{O}$ •
Anderol Diester	－••	${ }^{\circ}$－	－＊．•	－．．．	－＊．•	－＊．•	－•••	－00•	－•••	－＊••	－＊．•	$\bigcirc 0 \cdot$－	${ }^{\circ} 0 \cdot$	－00•	－＊．．	${ }^{\circ} 0 \cdot$	${ }^{\circ} \mathrm{o}$ •
ANG－25（Diester Base）	－＊•	$\bigcirc 0$.	－．．．	－．．．	－．．．	－．．•	－•••	－＊••	－＊．	－＊••	－•••	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$－	－00•	－•••	$\bigcirc 0 \cdot$－	－0．•
ANG－25（Glyceral Ester）	$\bigcirc \bullet \bullet$	－$\cdot \bullet$	－$\cdot \bullet$	－$\cdot \bullet$	－$\cdot \bullet$	$\bullet \bullet \cdot \bullet$	－•••	－＊•		－＊••	－$\cdot \bullet$	$\bigcirc \bullet \bullet$	－00•	$\bigcirc \bullet \bullet$	－＊．	$\bigcirc \bullet \bullet$	－＊••
Aniline	$\bigcirc 00 \cdot$	－＊••	－＊．＊	－•••	－．．•	－＊．•	－•••	－00•	－0．•	－0．0	－．．．	$\bigcirc 00 \cdot$	$\bigcirc 00 \cdot$	－00•	－•••	－•••	${ }^{\circ} 0 \cdot$
Aniline Dyes		－．．．	－．．．	－	－．．．	．	－．．．	－	－．．•	－0．•	－．．．	$\bigcirc \bigcirc \bullet$	${ }^{\circ} 0 \cdot$	－．．．	－•••	－＊．•	－＊••
Aniline Hydrochloride	$\bigcirc 0 \cdot \bullet$	－＊••	$\bigcirc \bullet \bullet$	－	－＊••	－	－．．．	－	$\bigcirc \bullet \bullet$	－0．	－•••	$\bigcirc 00 \cdot$	－00•	－0••	$\bullet \bullet \bullet \bullet$	－	－＊••
Aniline Oils	－•••	－．．．	－．．．	－	$\bigcirc 0 \cdot \bullet$	－	－＊．＊	－•••	－．．．	－．．．	－．．．	－•••	－•••	－•••	－•••	－•••	－•••
Aniline Sulfate	－0．•	－．．．	－0．0	－	－	－	－	－＊．＊	－．．．	－0．•	－．．．	－．．＊	－0．	－•••	－	－•••	－＊．•
Aniline Sulfite	－0．•	－．．．	－0．•	－	－	－	－	－＊．＊	－．．．	－0．•	－．．．	－•••	$\bigcirc 0 \cdot$	－．．．	－	－•••	－•••
Animal Fats（Lards）	$\bullet \bullet \bullet$	－＊＊	－•••	－	－＊＊	－	$\bullet \bullet \bullet$	－＊••	－＊＊	$\bullet \bullet \bullet$	－•••	$\bigcirc \bigcirc \bullet \bullet$	－0••	－00•	$\bullet \bullet \bullet$	－0．•	－
Animal Fats（oils）	－•••	－．．．	－．．．	－	－．．．	－	－•••	－	－．．．	－•••	－	－＊．＊	－0．0	－0．•	－．．．	－＊．	－ 0 •
Ansul Ether 161 or 181	－0．•	－0．•	－0．	－	－0．	．	－0．\bullet	－0．•	－0．•	－0．•	－•••	$\bigcirc 0 \cdot$－	－＊•	－0．•	$\bullet \bullet \bullet$	－＊••	${ }^{\circ}$－
Anthracene	－	－	．	－	－	－	－	－	－	$\bullet \bullet \bullet$	－$\cdot \bullet$	－	－	－	－	－	－
Anthranilic Acid	－	－	－	－	－	－	－	－	－	－	－．．．	－	－	－	－	－	－
Anthraquinone	－	－	－	－	－	－	－	－	－	－	－．．．	－	－	－	－	－	－
Antifreeze Solutions	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－	$\bullet \bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－0••	$\bigcirc 0 \cdot$－	－0．•	－	$\bigcirc \bigcirc \bullet$	${ }^{\circ} 0 \cdot 0$	－＊••	－＊＊	${ }^{\circ} \bullet \bullet$	－•••
Antimony Chloride	－•••	－0．	－．．．	－	－	－	－	－0，•	－．．•	－．．．	－．．．	$\bigcirc 0 \cdot$－	－•••	－•••	－．．．	－＊•	－0．•
Antimony Pentachloride	－＊•	$\bigcirc 0 \cdot \bullet$	－•••	－	$\bigcirc 0 \cdot$－	－	$\bigcirc 00 \bullet$	－00•	－＊．	－＊••	－．．•	$\bigcirc 0 \cdot$	－00•	－00•	－•••	$\bigcirc 0 \cdot$	－0．•
Antimony Pentafluoride	－	－	－	－	－	－	－	－	－	－	－＊••	－	－	－	－	${ }^{\circ}$－	－
Antimony Salts	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－	－	－	$\bullet \bullet \bullet \bullet$	－•••	＊	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	＊	－
Antimony Sulfate	－	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－	－	－
Antimony Tribromide	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－•••	－	－•••	－	$\bullet \bullet \bullet$	${ }^{\circ} 0$ •	$\bullet \bullet \bullet$	－＊＊＊	－＊••	$\bigcirc \bullet \bullet$	${ }^{\bullet \bullet \bullet}$	${ }^{\circ} 0 \cdot$	－	${ }^{000}$	－＊••
Antimony Trichloride	－••	－＊•	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	－．．．	$\bigcirc \bigcirc \bullet$	$\bigcirc \bullet \bullet$	－	－	－•••	－•••
Antimony Trifluoride	－	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	－	－	－	－	＊	－
Antimony Trioxide	$\bullet \bullet \bullet$	－$\bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	$\bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	－	－	$\bullet \bullet \bullet \bullet$	－	－
Antinmony Triflouride	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－${ }^{\bullet \bullet}$	－	－	－	－	－	－	$\bullet \bullet \bullet \bullet$	${ }^{\bullet \bullet \bullet}$	$\bigcirc 0 \cdot \bullet$	－	－	$\bullet \bullet \bullet$	－	－
Apple Acid	－•••	－0．	－．．•	－	－	－	－	－＊••	－•••	－•••	－．．．	－姓•	－	－＊＊	－		$\bullet \bullet \bullet$

								$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { जn } \end{aligned}$				岂 学 응 몬					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Aqua Regia	－0．•	$\bullet \bullet \bullet$	－•••	－•••	－•••	－•••	－•••	$\bigcirc 00 \cdot$	－०••	－00•	－•••	－00•	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$－	$\bigcirc \bullet \bullet$	－०••	－00•
Arachidic Acid	－	－	－＊．॰	－＊．•	－．．．	－•••	－＊．•	－	－	－	－•••	－	－	－	－	－	－
Argon	$\bullet \bullet \bullet$	－•••	－．．•	－．．．	－．．．	－•••	－•••	－＊•	－＊•	－．．•	－•••	$\bigcirc 0 \cdot$－	－•••	－	－•••	－＊••	－
Arochlor 1248	－0••	$\bullet \bullet \bullet$	－＊••	－＊．•	－＊＊	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bigcirc 0 \cdot \bullet$	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot \bullet$	－＊＊	－00•	$\bigcirc \bullet \bullet$	－00•	－•••	$\bigcirc \bullet \bullet$	－00•
Arochlor 1254	－00•	－•••	－．．．	－．．．	－．．．	－•••	－•••	－0．•	－•••	$\bigcirc 0 \cdot$－	－•••	－0．	－00•	－00•	－•••	－00•	－00•
Arochlor 1260	－•••	$\bullet \bullet \cdot$	－．．．	－．．．	－．．．	－•••	－•••	－•••	－．．．	－•••	－•••	－•••	－•••	－•••	－•••	－•••	－$\cdot \bullet$
Aromatic Alcohol	－0．•	$\bigcirc \bullet \bullet$	－．．．	－	－	－	－	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－	－	－	－	－0．•
Aromatic Fuels	－．．．	－००	－．．．	－．．•	－•••	－•••	－•••	－0．	－．．．	－•••	－•••	－0．	－0．	－0．	－••	－0．	－००॰
Aromatic Hydrocarbons	－0．\bullet	$\bigcirc 0 \cdot$	－．．．	－	．	．	－	－0．•	－•••	－	－•••	$\bigcirc 0 \cdot$－	－०．॰	$\bigcirc 0 \cdot$	－•••		－००॰
Aromatic Spirits	－0．•	－	－．．．	－	－	－	－	－	－	－	－	－	－	－	－	$\bigcirc \bigcirc$	－००॰
Aromatic Tar	－0••	－	－．．．	－	－	－	－	－	－	－	－	－	－	－	－	$\bigcirc 0 \cdot$	－00•
Aromatic Vinegar	－0••	$\bullet \bullet \bullet$	－$\bullet \bullet$	－	－	－	－	$\bullet \bullet \bullet$	－	－	－		$\bigcirc \bullet \bullet$	－	－	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Arsenic Acid	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－．．•	－	－	－	－	－•••	－•••	－．．•	－•••	－•••	－०．॰	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊••
Arsenic Butter	－0．0．	$\bigcirc 0$.	$\bigcirc 0$.	－	－	－	－	－	．	．	－	－•••	－		－	$\bigcirc 0 \cdot$－	－00•
Arsenic Chloride	－0••	${ }^{\circ} \bullet$	${ }^{\circ} 0 \cdot$	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	－	－	－	$\bigcirc 00 \cdot$	${ }^{\circ} 0 \bullet$
Arsenic Salts	－	－	$\bigcirc \bullet \bullet$	－	－	－	－	－	－	－	－	．	$\bigcirc \bullet \bullet$	－	－	－	－00•
Arsenic Trichloride	－•••	－0．	$\bigcirc 00 \cdot$	$\bigcirc 00$－	$\bigcirc 0 \cdot$	－0．	－00•	－	－	－．．．	－•••	$\bullet \bullet \bullet$	－	－	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	${ }^{\circ} 0 \cdot$
Arsenic Trioxide	－	－	－	－	－	－	－	－	－	－．．．	－．．．	－	－	－	－	－	－
Arsenic Trisulfate	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－	－	－	－
Arsine	－	－	－	－	－	－	－	\cdot	－	－	－＊＊	－	－	－	－	－	－
Ascorbic Acid	－	－	$\bullet \bullet \bullet \bullet$	－＊＊	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－•••	$\bullet \bullet \bullet \bullet$	－	－	－	－	－	－
Askarel Transformer oil	－＊•	－००．	－．．．	－．．．	－．．．	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	－＊．	－＊．	$\bullet \bullet \bullet \bullet$	$\bigcirc 0 \cdot$	$\bigcirc 00 \bullet$	${ }^{\circ} \stackrel{0}{ }$	$\bullet \bullet \bullet$	$\bigcirc \bigcirc \bullet$	${ }^{\circ} 0 \bullet$
Aspartic Acid	－	－	－0••	$\stackrel{\bullet \bullet}{ }$	${ }^{\bullet \bullet \bullet}$	－0••	$\bigcirc \bullet \bullet$	－	－	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－	－	－	－	－	－
Asphalt	－＊＊＊	${ }^{\circ} \bullet$	$\bullet \bullet \bullet$		$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－0••	$\bigcirc \bullet \bullet$	$\bigcirc 0 \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bigcirc \bullet$	－＊••				
ASTM Method d－471－1	－•••	$\bigcirc \bigcirc$	－	－	－	－	－	－0••	－＊••	－＊••	－•••	－	$\bullet \bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－	${ }^{\circ} 0 \cdot$	${ }^{\circ} 00$
ASTM Methoid d－471－2	$\bullet \bullet \bullet$	－0．	－	－	－	－	－	－0••	－＊＊	－•••	$\bullet \bullet \bullet$	－	$\bigcirc \bullet \bullet$	${ }^{\circ} 0 \cdot$	－		${ }^{\circ} 0 \cdot$
ASTM Method d－471－3	$\bullet \bullet \bullet \bullet$	－0＊	－	－	－	－	－	－0••	$\bullet \bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet \bullet$	－	$\bigcirc \bullet \bullet$	${ }^{\circ} 0 \cdot$	－	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$
ASTM Reference Fuel A	$\bullet \bullet \bullet$	－0＊	$\bullet \bullet \bullet$	${ }^{\circ} \stackrel{0}{ }$	－＊•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊•	－•••	$\bigcirc 00 \cdot$	－0••	－00•	${ }^{\circ} 0 \bullet$				

												$\begin{aligned} & \text { 岂 } \\ & \text { 落 } \\ & \text { 응 } \\ & \text { 롱 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
ASTM Reference Fuel b	$\bullet \bullet \bullet \bullet$	$\bigcirc \bigcirc$	－$\bullet \bullet$	－•••	－$\bullet \bullet$	－•••	－•••	$\bigcirc \bigcirc$	－•••	－•••	－•••	$\bigcirc \bigcirc \bullet$	－＊••	$\bigcirc \bigcirc \bullet$	－००•	$\bigcirc 0 \cdot$	－00•
ASTM Reference Fuel C	$\bullet \bullet \bullet$	${ }^{\circ}$－	－•••	－•••	－＊．•	－•••	－•••	－00•	－＊••	－•••	－＊．•	$\bigcirc 0 \cdot$－	－00•	$\bigcirc 0 \cdot$－	－00•	$\bigcirc 0 \cdot$	－00•
ASTM Reference Fuel D	$\bigcirc \bigcirc \bullet$	$\bigcirc 0 \cdot$	－＊．•	－．．．	－＊．•	－．．．	－•••	－0．•	－•••	－＊••	－．．．	$\bigcirc 0 \cdot \bullet$	－＊••	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$	－
ASTM Reference Oil No． 1	－•••	－००－	－．．．	－．．．	－．．．	－•••	－．．．	－•••	－＊．＊	－．．．	－．．．	－•••	－•••	－0．	－．．．	$\bigcirc 0 \cdot$	－00•
ASTM Reference oil No． 2	－•••	－००•	－•••	－•••	－＊．•	－•••	－•••	－00•	－•••	－•••	－•••	－•••	－•••	$\bigcirc 00 \cdot$	－＊••	$\bigcirc 0 \cdot$	－00•
ASTM Reference Oil No． 3	－•••		－．．．	－．．．	－．．．	－•••	－＊．•	$\bigcirc \bullet \bullet$	－＊••	－．．．	－．．．	$\bigcirc \bigcirc \bullet \bullet$	－•••	$\bigcirc 00 \cdot$	－0．•	$\bigcirc 0 \cdot$	－00•
ASTM Reference oil No． 4	－•••	－००	－．．．	－．．．	－．．．	－•••	－．．•	－००	－＊．＊	－•••	－•••	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$－	－＊••	$\bigcirc 00$	－00•
ASTM Reference Oil No． 5	－•••	－००	－．．．	－＊．•	－．．．	－•••	－＊．•	－	－	－．．．	－•••	－	－	－	－•••	－	－
Astral 0il	－•．．	$\bigcirc 0 \bullet$	－．．．	－	－	－	．	$\bigcirc \bigcirc \bullet$	－	．	－	－．．•	○○••	－	－	$\bigcirc \bigcirc \bullet$	－0．•
AtL－857	－．．．		－•••	－	－	－	－	$\bigcirc \bigcirc$	－＊．	－．．．	－	$\bigcirc \bigcirc \bullet$	$\bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc \bullet$	－•••	$\bigcirc \bigcirc$	－0．•
Atlantic Dominion F	$\bullet \bullet \bullet$	－00•	－	－	－	－	－		$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－．．•	－＊••	$\bigcirc 0 \cdot$－	－．．．	$\bigcirc 0 \cdot$－	－00•
Atlantic Utro Gear－EP Lubricant	－•••	－००	－	－	－	－	－	－००－	－	－．．．	－	－．．•	－•••	－0．	－＊．•	－0．	－0．＾
Aurex 903R	－•••	－००	－•••	－•••	－•••	－•••	－•••	$\bigcirc \bigcirc$	－0．	－．．．	－•••	－．．．	－•••	$\bigcirc 0 \cdot$－	－•••	－00•	－＊＊
Automatic Transmission Fluid	－•••	－0．	－•••	－．．．	－．．．	－•••	－•••	$\bigcirc 00 \cdot$	－	－•••	－．．．	－．．•	－•••	－00•	－•••	－0．	－00•
Automotive Brake Fluid	－0．0	－•••	$\bigcirc 00 \cdot$	$\bigcirc 00$－	$\bigcirc 00 \cdot$	－00•	－00•	－0．•	－00•	－0．•	－．．．	－••	－00•	－•••	－•••	－＊＊	
Aviation Gasoline	$\bullet \bullet \bullet$	－0．	－0．	．	－	－	．	－००．	－•••	－	－．．．	$\bigcirc 00 \bullet$	－＊．	－0．	－0．•	$\bigcirc 0 \cdot$	－00•
Axarel 9100	－	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－	－	－
Azobenzene	－	－	－	－．．．	－•••	－•••	－•••	－	－	－	－．．．	－	－	－	－	－	－
Baking Soda	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \cdot \bullet$	－	－	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \cdot \bullet$	－．．．	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Bardol B	－0．\bullet	－००．	－．．．	－．．．	－•••	－•••	－•••	－००．	－＊．．	$\bigcirc 0$.	－．．．	－0．0	$\bigcirc 0 \cdot$－	$\bigcirc 0$.	－＊．．	$\bigcirc 0 \cdot$	${ }^{\circ} \mathrm{O} \bullet$
Barium Carbonate	$\bullet \bullet \bullet$	－•••	－．．．	－．．．	－．．．	－•••	$\bullet \bullet \bullet \bullet$	－	－	$\bigcirc \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－$\bullet \bullet$
Barium Chlorate	－	－	－＊＊	－＊＊	－．．．	－•••	－．．．	－	－	－0．0	－．．．	－	－	－	－	－	－$\bullet \bullet$
Barium Chloride	$\bullet \bullet \bullet$	－•••	－•••	－•••	－＊．•	－•••	－•••	－•••	$\bullet \bullet \bullet$	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	－•••
Barium Cyanide	－0．0	－•••	－．．．	－．．．	－．．．	－•••	－•••	－	－	－．．．	－．．．	－•••	\checkmark	－	－•••	－	－
Barium Fluoride	－•••	－0．0	－0．0	－	－	－	－	$\bigcirc 0 \cdot$ •	－	－	－	－．．．	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	$\bigcirc \bullet \bullet$	${ }^{\circ} 0 \cdot 0$
Barium Hydrate	－•••	$\bullet \bullet \bullet \bullet$	－•••	－	－	－	－	$\bullet \bullet \bullet \bullet$	－	\bullet	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	$\bullet \bullet \bullet \bullet$	－$\bullet \bullet$
Barium Hydroxide	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$									
Barium lodide	－	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	－．．．	－	－	－	－•••	－	－

								$\begin{aligned} & \text { 岂 } \\ & \text { OU } \\ & \text { 位 } \end{aligned}$									
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Barium Monohydrate	－•••	－	－	－	－	－	－	－•••	－•••	－	－•••	－•••	－	－	－	－•••	－•••
Barium Monosulfide	－•••	－．．•	－	－	－	－	－	－•••	－	－	－	－•••	－•••	－•••	－	－•••	－•••
Barium Nitrate	－•••	－＊．•	－•••	－＊．•	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－0．•	－＊．•	－•••	－•••	－•••	－	－＊••	－00•
Barium Oxide	－	－	－	－	－	－	－	－	－	－＊••	－＊＊	－	－	－	$\bullet \bullet \bullet$	－	－
Barium Peroxide	－	－	－	－	－	－	－	－	－	$\bigcirc \cdot \bullet$	－•••	－	－	－	－	－	－
Barium Polysulfide	．	－	－	．	－	－	．	．	－	－०．७	－	－	－	－	－	－	－
Barium Salts	－•••	－•••	－．．．	－．．．	－．．．	－•••	－•••	－•••	－．．．	－．．．	－．．．	－•••	－•••	－•••	－•••	－•••	$\bullet \bullet \bullet \bullet$
Barium Sulfate	－•••	－．．．	－．．．	－．．．	－．．．	－•••	－•••	－＊．	－．．．	－．．．	－．．．	－＊．	－•••	－．．．	－．．．	－•••	－．．．
Barium Sulfide	－•••	－•••	－．．．	－．．．	－．．．	－•••	－•••	－•••	－．．．	－•••	－．．．	－•••	－•••	－＊．•	－•••	－•••	－•••
Basic Iron Sulfate	－•••	－	－	－	－	－	－	－	－	－	－	－•••	．	－	－	－•••	－•••
Bayol 35	－•••	－0．	－．．．	－．．．	－．．．	－•••	－•••	$\bigcirc 00 \cdot$	－．．．	－•••	－．．．	－•••	－0．•	$\bigcirc 0 \cdot$－	－•••	$\bigcirc 0 \cdot$	－00•
Bayol D	－．．．	－0．•	－．．．	－．．．	－．．．	－•••	－．．．	－0．	－．．．	－．．．	－．．．	－．．•	－00•	－0．	－•••	－00•	－00•
Beer	－．．．	－．．．	－．．•	－．．．	－．．．	－•••	－•••	－•••	－．．．	－．．．	－．．．	－＊••	－•••	－•••	－．．．	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Beet Sugar Liquids	－．．．	－．．．	－	－	－	－	－	－．．．	－．．．	－．．．	－．．．	－＊．	$\bigcirc 0 \cdot$	－．．．	－•••	－•••	－．．．
Beet Sugar Liquors	－•••	－•••	－•••	－•••	－$\cdot \bullet$	－•••	$\bullet \bullet \bullet$	－•••	－．．．	－．．．	－．．．	$\bigcirc \bullet \bullet$	－00•	－•••	－•••	－•••	－•••
Benzal Alcohol	－00•	－	－．．•	－	．	．	－	．	．	－	－	－0．•	－	－	－	－•••	－०••
Benzal Chloride	－00•	－	．	－	－	．	－	－	－	－	－•••	－	－	－	－	$\bigcirc \bullet \bullet$	－
Benzaldehyde	－0．•	－•••	－0．\bullet	－0．	－0．0	－0．${ }^{\circ}$	－0．•	－००	－0．	$\bigcirc 0$.	－．．．	－0．${ }^{\text {－}}$	－0．	－0．	－＊．	－＊．•	－00•
Benzanthrone	－	－	－．．．	$\bigcirc \bullet \bullet$	－．．．	$\bullet \bullet \bullet$	－•••	－	－	－＊．•	－．．．	－	－	－	－	－	－
Benzene	－0．•	－0．	－听	－听	－．．．	－•••	－．．．	$\bigcirc 0 \cdot \bullet$	－＊．	$\bigcirc \bigcirc \bigcirc$	－．．．	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$－	－0．•	$\bigcirc 0 \cdot$	－००॰
Benzene Carbinol	$\bigcirc 0 \cdot$－	－•••	$\bigcirc 0 \cdot$	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－	－	－	${ }^{\circ}$－	${ }^{\circ} \bullet$	－	－	$\bigcirc \bullet \bullet$	${ }^{\circ} 0 \bullet$
Benzene Hexachloride	－	－	－．．．	－．．．	－．．．	－．．•	－．．．	－	－	－	－．．．	－	－	－	－	－	－
Benzene Sulfonic Acid	－00•		－•••	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	－＊••	－0．0	－＊＊	－＊•	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot$－	$\bullet \bullet \bullet$	$\bigcirc 00 \cdot$	${ }^{000}$ •
Benzidine	－	－	－	－	－	－	－	－	－	－＊．•	－．．•	－	－	－	－	－	－
Benzil	－	－	－	－	－	－	－	－	－	－＊．•	－	－	－	－	－	－	－
Benzilic Acid	－	－	－	－	－	－	－	－	\checkmark	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－	－	－
Benzine（Ligroin）	$\bullet \bullet \bullet$	$\bigcirc 00 \cdot$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊＊	－0．	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$－	$\bigcirc \bullet \bullet$	$\bigcirc 00 \cdot$	－00•
Benzochloride	－00•	－•••	－	－	－	－	－	－	－．．．	－0．•	－	$\bigcirc 0 \cdot$	－	$\bigcirc 0 \cdot$	－•••	－•••	－00•

									$\begin{aligned} & \text { 岂 } \\ & \text { O} \\ & \text { 訁 } \\ & \text { O} \\ & 0 \\ & \vec{Z} \end{aligned}$			$\begin{aligned} & \text { 岂 } \\ & \text { 品 } \\ & \text { 응 } \\ & \text { 롱 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Benzoic Acid	$\bigcirc 0 \cdot$	$\bigcirc \bigcirc \bullet$	－•••	－•••	－•••	－•••	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	－＊•	$\bigcirc 0 \bullet$	－•••	－＊•	$\bigcirc 0 \cdot$ •	$\bigcirc \bigcirc \bullet$	－•••	$\bigcirc \bigcirc \bullet$	－00•
Benzoin	－	－	－	－	－	－	－	－	－	－嘍•	－．．．	－	－	－	－	－	－
Benzol	$\bigcirc 0 \cdot$－	$\bigcirc 0$－	－＊••	－＊．＊	－＊．•	－•••	－•••	－००．	－＊•	$\bigcirc 00 \cdot$	－．．．	$\bigcirc \bigcirc \bigcirc$	$\bigcirc 0 \cdot$－	${ }^{\circ} 0 \cdot$	－0．0	${ }^{\circ} \bullet$	${ }^{\circ} 00$
Benzonitrile	－	－	．	－	－	－	－	－	－	－0••	－．．．	－	－	－	－	－	－
Benzophenone	－0．	－＊•	－＊•	－•••	－•••	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－0．•	－•••	$\bigcirc 00$－	－•••	$\bigcirc 00 \cdot$	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot$	－•••	－＊＊	－
Benzoquinone	－	－＊••	－．．．	－	－	－	－	－	－	－	－．．．		－0．	－	－••	$\bigcirc \bullet \bullet$	－00•
Benzotrichloride	$\bigcirc 0 \cdot$－	－．．．	－．．．	－	－	－	．	－	－	－00•	－•••	－	－0．\bullet	－	－0．0	－	－
Benzotriflouride	－	－	－	－	－	－	－	－	．	$\bigcirc 0 \cdot$	－•••	－	－	－	－．．．	－	－
Benzoyl Chloride	$\bigcirc 0 \bullet$		$\cdots \bullet$	－	－	．	－	－००	－＊•	－	－$\cdot \bullet$	$\bigcirc \bigcirc \bullet$	－0．	－	－＊．	$\bigcirc \bigcirc \bullet$	－0．•
Benzoyl Peroxide	－	－	．	－	－	．	－	－	．	－	－•••	－	－	－	－	－	－
BenzoyIsulfonic Acid	$\bigcirc \bullet \bullet$	$\bigcirc 0$.	－•••	－	－	－	－	－	－＊．	－＊．	－．．．	－0．•	－०••	－0．	－	$\bigcirc 00$－	－00•
Benzyl Acetate	－0．	－	．	－	－	－	－	－	．	－0．•	－．．．	－	－	－	－	$\bullet \bullet \bullet$	－00•
Benzy A Alcohol	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	．	－	－＊＊	－＊．	－0．	－．．．	－0．•	－0．	－0．	－＊•	－＊••	－00•
Benzyl Amine	－		．	－	－	．	－	－	．	－	－．．．	－	－	－	－	－	－
Benzyl Benzoate	$\bigcirc 0 \cdot$－	－＊•	－•••	－	－	－	－	－	－•••	－00•	－•••	－0．－	－	$\bigcirc 0 \cdot$－	－•••	$\bigcirc \bullet \bullet$	－00•
Benzyl Bromkle	－	－	－	－	－	－	－	－	－	－0．	－•••	－	－	－	－•••	－	－
Benzyl Butyl Phthalate	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－••	$\bullet \bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	－．．．	－••	－•••	－•••	－0．	－•••	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Benzy Chloride	$\bigcirc 0 \cdot$－	－0．	－．．．	－．．．	－．．．	－．．．	－•．•	－००．	－．．．	－00•	－．．．	－0．	－00•	$\bigcirc 0 \cdot$	－＊＊	－0．	－00•
Benzyl Phenol	－＊．•	$\bigcirc 0 \cdot$－	－．．．	－．．．	－．．．	－•••	$\bullet \bullet \bullet$	－	－＊．	－＊•	$\bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	$\bigcirc 0 \cdot \bullet$	${ }^{\circ} 0 \cdot$	－	$\bigcirc 0 \cdot$	${ }^{\circ} 0 \bullet$
Benzyl Salicylate	－听	－0．	－•••	－	－	－	－	－	－＊．	－•••	－•••		－0．•	$\bigcirc 0 \cdot$－	－		－००॰
Beryllium Chloride	－	－	－	－	－	－	－	－	－	$\bigcirc 0$.	－．．．	－	－	－	－$\bullet \bullet$	－	－
Beryllium Fluoride	－	－	－	－	－	－	－	－	－	－$\cdot \bullet$	－${ }^{\bullet \bullet}$	－	－	－	－＊＊	－	－
Beryllium Oxide	－	－	－	－	－	－	－	－	－	－•••	－•••	－	－	－	$\bullet \bullet \bullet$	－	－
Beryllium Sulfate	－	－	－	－	－	－	－	－	－	－०．॰	$\bullet \bullet \bullet$	－	－	－	－	－	－
Beta Carotene	$\bullet \bullet \bullet$	－	－•••	－	－	－	－	－	－	－	－	${ }^{\circ} 0 \bullet$	$\bullet \bullet \bullet$	－	－	－	－
Bismuth Carbonate	－．．．	－•••	－•••	－•••	－•••	－•••	$\bullet \bullet \bullet$	－	－	－0．•	－	－•••	－	－	－	－•••	$\bullet \bullet \bullet$
Bismuth Nitrate	－	－	－	－	－	－	－	－	－	－0．•	－	－	－	－	－	－	－
Bismuth Oxychloride	－	－	－	－	－	－	－	－	－	－०••	$\bullet \bullet \bullet$	－	－	－	－	－	－

								$\begin{aligned} & \text { U } \\ & \text { OU } \\ & \text { ज } \end{aligned}$				岂 品 웅 돈					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Bittern	－	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－	－	－
Black Liquor	－•••	－．．•	－•••	－＊．•	－＊．•	－•••	－•••	－•••	－	－•••	－0．•	－•••	${ }^{\circ} 0 \cdot$	－	－＊．．	－•••	－＊••
Black Point 77	－•••	－．．．	－．．•	－$\cdot \bullet$	－．．．	－•••	－•••	－0．0	－0．0	－$\cdot \bullet$	－•••	－0．•	－0••	－0．•	－•••	－•••	－－••
Black Sulfate Liquor	$\cdots \bullet$	$\bullet \bullet \bullet$	－•••	－	－	－	－	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	－	－	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－＊••
Blast－Furnace Gas	－0．	－0．\bullet	－．．．	－•••	－．．．	－•••	－•••	－•••	－•••	－00•	－•••	－00•	$\bigcirc 0 \cdot$	$\bigcirc 00 \cdot$	－•••	－0．	－00•
Bleach Liquor	$\bigcirc 0 \cdot$	－$\bullet \bullet$	－．．．．	－．．．•	－．．．	－．．．．	－．．．	－．．．	－＊．．	－＊．•	－．．．	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	．	－•••	－＊．•	－＊•
Bleach Solutions	$\bigcirc 00 \cdot$	－•••	－	－	－	－	－	－．．．	－．．．	－	－•••	$\bigcirc 0 \cdot$	$\bigcirc 00 \cdot$	－	－	－＊．	－00•
Blood	$\bigcirc 0 \cdot \bullet$	－$\cdot \bullet$	－＊•	－	－	－	－	－＊•	－	－	－	$\bullet \bullet \bullet$	$\stackrel{\bullet \bullet}{ }$	－	－	－	－
Borax	－•••	－．．．	－．．．	－	－	－	－	－．．•	－＊．•	－．．．	－•••	－	－•••	－	－•••	－•••	－
Borax Solution	－＊．	－．．．	－．．．	－．．．	－．．．	－•••	－•••	－．．．	－＊．	－．．．	－	－＊．＊	－．．．	－＊•	－	－．．．	－．．．
Bordeaux Mixture	－•••	－．．．	－．．○	－．．．	－•••	－•••	－•••	－＊•	－＊．＊	－＊．	－•••	－＊．＊	－0．	－＊•	－•••	－•••	－＊．＊
Boric Acid	－•••	－．．．	－．．．	－．．．	－．．．	－•••	－•••	－•••	－．．．	－．．．	－•••	－＊．＊	－$\bullet \bullet$	－•••	－．．．	－．．．	－•••
Boric Oxide	－	－	－	－•••	－．．．	－•••	－•••	．	－	－0．0	－．．．	－	－	－	－	－	－
Borneol	－	－	－＊．	－•••	－•••	－．．．	－•••	－	－	－＊．	－•••	－	－	－	－	－	－
Bornyl Acetate	－	－	－	$\bigcirc 00 \cdot$	$\bigcirc 00 \cdot$	－00•	$\bigcirc 00 \cdot$	－	－	－＊••	$\bullet \bullet \bullet$	－	－	－	－	－	－
Bornyl Chloride	－	－	．	－	－	－	－	－	－	－．．．	－	－	－	－	－	－	－
Bornyl Formate	－	－	－	－	－	－	．	．	－	－＊．．	－•••	－	－	－	－	－	－
Boron Fluids（HEF）		－0．	－．．．	－	－	－	－	$\bigcirc \bigcirc$	－＊．	－＊．．	－．．．	－0．	－0．	$\bigcirc \bigcirc$	－＊．	－0．	－0．•
Boron Phosphate	－	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－	－	－
Boron Tribromide	－	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－	－	－
Boron Trichloride	－	－	－	－	－	－	－	－	－	－	－．．．	－	－	－	－	－	－
Boron Trifluoride	－	－	－	－	－	－	－	－	－	－	－．．＊	－	－	－	－	－	－
Boron Trioxide	－	－	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet \bullet$	－	－	－	－	－	－
Brayco 885 （MIL－L－6085A）	－＊•	－0．	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \cdot \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－०••	$\bullet \bullet \bullet$	－＊•	－＊＊	$\bigcirc \bullet \bullet$	－0••	$\bigcirc 0 \cdot \bullet$	－＊••	－0••	－00•
Brayco 910	－•••	－．．．	$\bigcirc 0 \cdot$－	－00．	－0．•	－0．•	－00•	$\bigcirc 00 \cdot$	$\bigcirc 00 \cdot$	－•••	－．．．	－＊．•	－0．0	－••	－0．•	－•••	－•••
Bret 710	－＊••	－＊＊	－	－	－	－	－	${ }^{\circ} 0 \cdot$	${ }^{\circ} \cdot \stackrel{ }{ }$	－＊•	－	$\bigcirc \bullet \bullet$	－0••	$\bullet \bullet \bullet$	－＊＊	－•••	$\bullet \bullet \bullet$
Brine	－•••	－＊••	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－	－	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••
Brine Seawater	$\bigcirc \bullet \bullet$	－嘍•	－	－	－	－	－	$\bullet \bullet \bullet$	－•••	－•••	－	－0．•	－＊•	$\bullet \bullet \bullet$	－•••		－

								$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { जn } \end{aligned}$				$\begin{aligned} & \text { 岂 } \\ & \text { 落 } \\ & \text { 응 } \\ & \text { 롱 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Brom－113	$\bigcirc \bigcirc \bullet$		－	－	－	－	－	$\bigcirc 0 \cdot$－	－	－0••	－	$\bigcirc \bigcirc \bigcirc$	－		－०•	$\bigcirc 0 \bullet$	－
Brom－114	－••	－0．•	－	－	－	－	－	－0．•	－	$\stackrel{\bullet \bullet}{ }$	－	－．．•	－	－0．•	－०．•	$\bigcirc 0 \cdot$－	－0．•
Bromic Acid	－	－	－	－	－	－	－	－	－	－0••	－•••	－	－	－	－	－	－
Bromine	－00•	－0．•	－．．．	－•••	－•••	－•••	－＊••	－0．	－＊．•	－00•	－＊．．	－00•	$\bigcirc 00$－	－	－•••	$\bigcirc 0 \cdot$	－0．•
Bromine Anhydrous	$\bigcirc 0 \cdot$－	－0．	－．．．	－•••	－．．．	－•••	－•••	－0．0	－•••	－	－．．．	$\bigcirc 0 \cdot$－	－	－	－＊••	－0．	－0．＾
Bromine Pentafluoride	－००•	－0．	－0．	－0．	$\bigcirc 00 \cdot$	－0．	－0．•	－००॰	－0．	－0．\bullet	－．．．	$\bigcirc 0 \cdot \bullet$	－00•	०००•	$\bigcirc 0 \bullet$	－00•	${ }^{\circ}$－\bullet
Bromine Trifluoride	－0．－	－0．	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$ •	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	$\bigcirc 0 \bullet$ •	－0．－	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$ •	－．．．	$\bigcirc 0 \cdot$ •	$\bigcirc 0 \cdot$	－0．0	$\bigcirc 0 \bullet$	$\bigcirc 0 \cdot$	－0．\bullet
Bromine Water	－००•	－＊．•	$\bigcirc \bullet \bullet$	－	－	－	－		－＊••	${ }^{\circ} \stackrel{0}{ }$	－•••	${ }^{\circ} \bullet \bullet$	${ }^{\circ} 0 \cdot$	－00•	－0••	${ }^{\circ} \stackrel{0}{ }$	${ }^{\circ}$－\bullet
Bromobenzene		$\bigcirc 0$.	－．．．	－＊••	－．．．	$\bullet \bullet \bullet \bullet$	－•••	－००॰	－．．．	$\bigcirc 0$－	－．．．	$\bigcirc \bigcirc \bigcirc$	$\bigcirc 0 \cdot$	－0．•	－＊．．	$\bigcirc 0 \cdot$－	
Bromochloromethane	－००•	－．．．	－．．．	－．．．	－．．．	－．．•	－•••	－००॰	－．．．	－	－．．．	－०．•	－	－	－0．•	$\stackrel{\bullet \bullet}{ }$	－००
Bromotrifluoromethane（F－13B1）	$\bullet \bullet \bullet$	－．．．	．	－	－	．	－	－००•	－＊．•	－	－．0．	．	－	－	－०．	－	－
Buffered Oxide Etchants	－	－	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	－	－	－	－	－	－
Bunker Oil	$\bullet \bullet \bullet \bullet$	$\bigcirc 0 \cdot \bullet$	$\bullet \bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bigcirc 0 \cdot \bullet$	$\bigcirc \bullet \bullet$	－0，•	－＊•＊	－0．	－0．•				
Bunker＇s＂c＂（Fuel oil）	$\bullet \bullet \bullet$	－0．${ }^{\circ}$	－．．．	－•••	－．．．	$\bullet \bullet \bullet \bullet$	－•••	－	－$\bullet \bullet$	－	－	－००•	－＊••	－0．•	－	－0．	－००॰
Butadiene	－00•	$\bigcirc 00 \cdot$	－0．•	－	－	－0．•	－	－00•	－•••	－00•	$\bullet \bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	${ }^{0} 0 \cdot 0$	$\bigcirc 0 \cdot \bullet$	－＊＊	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$
Butane	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	$\bullet \bullet \bullet$		－．．．	－．．．	－．．．	－0••	$\bullet \bullet \bullet$	－	－．．．	－00•	－00•				
Butane，2，2－Dimethyl	－•••	$\bigcirc 0$.	－	－	－	－	－	－00•	－．．•	－．．．	－	$\bullet \bullet \bullet$	$\bigcirc 00 \cdot$	－0．•	－＊．＊	$\bigcirc 0 \cdot$	－0．\bullet
Butanol（Butyl Alcohol）	－•••	－＊•	－	－	－	－	－	－＊••	－•••	－＊＊	－	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－＊＊	－＊••	－＊••
Butene 2－Ethyl（1－Butene，2－Ethyl）	$\bullet \bullet \bullet \bullet$	－0．\bullet	－	－	－	－	－	－00•	$\bigcirc 0 \cdot \bullet$	－$\bullet \bullet$	－	${ }^{\circ} \bullet \bullet$	${ }^{\circ} 0 \cdot$	－	－•••	${ }^{\circ} \stackrel{0}{ }$	${ }^{\circ}$－
Butter－Animal Fat	$\bullet \bullet \bullet$	－•••	－	－	－	－	－	－＊••	$\bullet \bullet \bullet$	－•••	－•••	－०••	${ }^{\circ} \bullet \bullet$	－००•	$\bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	－0．•
Butyl Acetate	$\bigcirc 0 \cdot \bullet$	－．．．	$\bigcirc \cdots \bullet$	－	．	－	－	－0．•	$\bigcirc \bigcirc \bullet$	－0．	－．．．	$\bigcirc \bigcirc \bullet$	$\bigcirc 0 \cdot$	$\bigcirc 0 \bullet$ •	－	－＊•	－ $0 \cdot$
n －Butyl Acetate		－．．．	－0．	－	－0．	－	－0．•	－0．•	${ }^{\circ} \bullet \bullet$	${ }^{\circ} \stackrel{\bullet}{ }$	－•••		${ }^{\circ}$－		－0．•	－0••	${ }^{\circ}$－
Butyl Acetyl Ricinoleate	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	－	－•••	－	$\bullet \bullet \bullet \bullet$	－	$\bigcirc \bullet \bullet$	${ }^{\bullet \bullet} \cdot$	－＊＊＊	$\bullet \bullet \bullet$	${ }^{\circ}$－		$\bullet \bullet \bullet \bullet$	－＊＊	${ }^{\circ} \bullet \bullet$
Butyl Acrylate	－0．\bullet	－0．	－0．	－0．	$\bigcirc 0 \cdot$－	${ }^{\circ} 0 \cdot 0$	${ }^{\circ}$－	－•••	${ }^{\circ} \bullet$	－0．	－•••	${ }^{\circ} \bullet \bullet$	－	${ }^{\circ}$－\bullet	－0．•	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$
Butyl Alcohol	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－	－	－	－	－＊＊	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	${ }^{\circ} \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	${ }^{\bullet \bullet \bullet}$	$\bullet \bullet \bullet \bullet$
n－Butyl Alcohol	$\bullet \bullet \bullet$	－＊＊	－${ }^{\bullet \bullet}$	－	－＊＊＊	－	－•••	－＊＊＊	－•••	－${ }^{\bullet \bullet}$	－＊＊	－•••	${ }^{000}$	－	－$\cdot \bullet$	－${ }^{\circ}$	－•••
tert－Butyl Alcohol	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－•••	－	－＊＊	－	$\bullet \bullet \bullet$	－＊＊	$\bullet \bullet \bullet$	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－＊＊	$\bullet \bullet \bullet$	${ }^{\bullet \bullet \bullet}$	${ }^{\circ} \cdot \bullet$
Butyl Aldehyde	$\bigcirc 00 \bullet$	$\stackrel{\bullet \bullet}{ }$	${ }^{\circ} \bullet$ •	－	－	－	－	－$\bullet \bullet$	－	－	－	$\bigcirc \bullet \bullet$	－0••	－	－	$\bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$

								$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { जn } \end{aligned}$				岂 学 응 몬					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Butyl Amine	－○••		－0．•	－0．•	－0．•	－0．－	－0．•	－००		－•••	－•••	－0．•		－0．•	－••	－0．	－00•
Butyl Benzoate	－0．•	－•••	－．．•	－．．．	－．．．	－•••	－•••	－	－．．•	－0．•	－．．．	$000 \cdot$	－	－00•	－	－•••	－00•
n－Butyl Benzoate	－00•	－•••	－．．•	－＊．•	－＊．•	－•••	－•••	－	－＊．•	－0．•	－．．．	－00•	－	$\bigcirc 0 \cdot$－	－	－•••	－00•
Butyl Benzyl Phthalate（BBP）	－00•	－	－0．•	－听	－．．．	－00•	－．．．	－	－	－	－．．．	－	－	－	－	－•••	－00•
Butyl Butyrate	－0．0	－•••	－．．．	－	－．．．	－	－•••	－	－．．．	－	－．．．	－0．	－	$\bigcirc 00 \cdot$	－	－•••	－00•
n－Butyl Butyrate		－•••	－．．．	－	－．．．	－	－•••	－	－．．．	－	－．．．	$\bigcirc 00 \cdot$	－	$\bigcirc 0 \cdot$	－	－•••	－00•
tert－Butyl Caltechol	－00•	$\bigcirc \bullet \bullet$	．	－	－	－	－	－	$\bullet \bullet \bullet$	－0．•	－．．．	－．．．	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot \bullet$	－	－＊．．	－00•
Butyl Carbitol	－0，•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－0••	$\bullet \bullet \bullet$	$\bigcirc \bigcirc \bullet$	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	－$\cdot \bullet$	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－00•
Butyl Cellosolve	－○••	－•••	－0．\bullet	$\bigcirc 0 \cdot$－	$\bigcirc 0 \bullet$	－0．	－○••	$\bigcirc \bigcirc \bullet$	$\bigcirc 0 \cdot$－	－0．॰	－．．．	－0．${ }^{\circ}$		$\bigcirc 0 \cdot$－	－．••	－•••	－००॰
Butyl Cellosolve Acetate	－0．•	$\bullet \bullet \bullet$	－＊••		$\bigcirc 0 \cdot$	－0．•	－००॰	$\bullet \bullet \bullet$	－．．．	－०．॰	－．．．	．	－	－	－．．．		－
Butyl Cellosolve Adipate	－0．•	$\bullet \bullet \bullet$	－	－	－	－	－	－•••	－嘍•	－0．	－	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$	－0．	－•••	－＊．	－00•
Butyl Chloride	－00•	－	－	－	－	－	－	－	－	$\bigcirc \bigcirc \bullet$	－＊＊	－	－	－	－	－	${ }^{\circ} 0 \bullet$
Butyl Ether	－0••	－०．•	－0．	－0．	－0．	－0．	－00•	－0．	－०••	－०••	－•．．	－0．	$\bigcirc \bullet \bullet$	－	－	－	${ }^{\circ} 0 \cdot$
n－Butyl Ether	－०••	－०．॰	－0．${ }^{\circ}$	$\bigcirc 0$.	－0．	－0．\bullet	－0．＾	－००	$\bigcirc \bigcirc \bullet$	－०．๑	－．．．	－0．\bullet	－＊．	－	－	－	－0．＾
Butyl Lactate	－	－	－	－	－	－	－	－	－	－0．•	－•••	－	－	－	－	－	－
Butyl Laurate	－	－	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－०••	－$\cdot \bullet$	－	－	－	－	－	－
Buty M Mercaptan	－00•	$\bigcirc 0 \cdot$	$\bigcirc 00 \cdot$	－0．•	－＊．•	$\bigcirc 0 \cdot \bullet$	－＊．＊	$\bigcirc 0 \cdot$	－	$\bigcirc 0 \cdot$	－．．．	－	－	－	$\bullet \bullet \bullet$	－	－
tert－Butyl Mercaptan	－0，•	－0．	－	－	－	－		$\bigcirc 0$.	－		－$\cdot \bullet$	－00•	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$		$\bigcirc 0 \cdot$	－00•
Butyl Oleate	－00•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bigcirc 00$－	－．．．	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$	－00•	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－00•
Butyl Oxalate	－०••	－•••	－0．0	－	－	－	－	－•••	－•••	－०．॰	－．．．	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	－＊．•	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Butyl Stearate	－＊．•	－0．•	－．．•	－．．．	－．．．	－•••	$\bullet \bullet \bullet \bullet$	\bullet	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－．．．	${ }^{\circ} \bullet$	$\bigcirc \bullet \bullet$	－0．	$\bullet \bullet \bullet$	－	${ }^{\circ}$－
Butylene	$\bullet \bullet \bullet$		－．．．	－．．．	－．．．	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bigcirc \bullet$	－＊．	$\bigcirc 0 \cdot$	－$\bullet \bullet$		$\bigcirc \bullet \bullet$	${ }^{\circ} \stackrel{0}{ }$	－	$\bigcirc 0 \cdot$	${ }^{\circ} 0 \bullet$
Butyraldehyde	－0，－		－0．	$\bigcirc 0$.	$\bigcirc 0$.	${ }^{\circ} 0 \cdot$	－00•	$\bigcirc \bigcirc$	${ }^{\circ} \bullet$	$\bigcirc 0 \cdot$	${ }^{\bullet \bullet \bullet}$	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	${ }^{\circ} 0 \cdot 0$
Butyric Acid	－00•	$\bullet \bullet \bullet$	－0••	－＊•	$\bullet \bullet \bullet$	－0••	$\bigcirc \bullet \bullet$	$\stackrel{\bullet \bullet}{ }$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－＊＊	${ }^{\circ} 0 \cdot$	－00•	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－00•
Butyric Anhydride	－0••	－	－	－	－	－	－	－	－	－०••	－＊••	－	－	－	－	$\bigcirc \bullet \bullet$	－०••
Butryl Chloride	－＊＊	－0．	－•••	－	－	－	－	－	－＊••	$\bigcirc \bullet \bullet$	－＊＊	$000 \cdot$	$\bigcirc 0 \cdot \bullet$	${ }^{\circ} 0 \cdot$	－	－00•	${ }^{\circ} 0 \cdot 0$
Butyrolacetone	－$\bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \cdot \bullet$	－	－	－	－	$\bullet \bullet \bullet$	－•••	$\bigcirc \cdot \bullet$	－＊＊	$\bullet \bullet \bullet$	－00•	$\bullet \bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－•••
Butyroyl Chloride	－	－	－	－	－	－	－	－	－	－•••	－．．•	－	－	－	－		－

								$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { ت } \end{aligned}$				岂 品 응 온					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Cadmium Chloride	－	－	－	－	－	－	－	－	－	－0••	－•••	－	－	－	－	－	－
Cadmium Cyanide	－＊•	－•••	－．．॰	－．．＊	－•••	$\bullet \bullet . \bullet$	－•••	－	－．．•	－．．॰	－．．．	－＊••	－	－	－••	－	－0．＾
Cadmium Nitrate	－	－	$\bigcirc \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－	－	$\bigcirc 0 \cdot \bullet$	－＊••	－	－	－	－	－	－
Cadmium Oxide	－	－	－	－	－	－	－	－	－	－0．•	－．．．	－	－	－	－	－	－
Cadmium Sulfate	－	－	－	－	－	－	－	－	－	－0．•	－•••	－	－	－	－	－	－
Cadfnium Sulfide	－	－	－	－	－	．	－	－	－	－0．•	－．．．	－	－	－	－	－	－
Calcine Liquors	－•••	－•••	－．．．	－•••	－•••	－•••	－•••	－	－•••	－．．．	－．．．	－＊．•	$\bigcirc 0 \cdot$－	－	－•••	－•••	－
Calcium Acetate	－＊．•	－•••	$\bigcirc 0$.	$\bigcirc 0$.	－0．•	－0．\bullet	－००．	－००•	$\bigcirc 0 \cdot$	－．．．	－．．．	－＊．•	－0．	－0．\bullet	－＊．．	－•••	－•••
Calcium Aluminate	－•••	－	－•••	－	－	－	－	－	－	－	－	－	－	－	－	－•••	$\bullet \bullet \bullet \bullet$
Calcium Arsenate	－0••	$\bullet \bullet \bullet$	－0．0	$\bigcirc 0$－	$\bigcirc 0$－	－००•	－००－	－＊••	－．．．	－0．•	－．．．	－•••	－0．	$\bullet \bullet \bullet$	－	－•••	$\bullet \bullet \bullet$
Calcium Benzoate	－＊•	－0．•	－．．॰	－	－	．	－	－	－＊．	－＊••	－．．•	$\bigcirc 00 \cdot$	－0．•	－0．0	－	$\bigcirc 0$.	${ }^{\circ} \mathrm{O}$－
Calcium Bicarbonate	－0．•	－•••	－0．•	－	－	－	－	－＊••	－．．．	－०．॰	－．．．	－•••	$\bigcirc 00 \cdot$	－•••	－	－•••	－•••
Calcium Bichromate	－	－	．	－	－	．	－	－	－	－	－．．．	－	－	－	－	$\bullet \bullet \bullet$	－
Calcium Bisulfide	－0••	－•••	$\bigcirc \bullet \bullet$	－．．．	－•••	－．．•	－•••	－．．．	－．．•	－0．•	－．．．	－•••	－0．	－•••	－	－•••	－•••
Calcium Bisulfite	－•••	－0．•	－．．•	－•••	－•••	－•••	－•••	－0．0	－0．0	－．．．	－．．．	－0．0	－•••	－00•	－．．＊	－•••	－00•
Calcium Bromide	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－．．．	－	－		－	－•••	$\bullet \bullet \bullet$	－•••	－．．．	$\bullet \bullet \bullet$					
Calcium Carbide	－	－	－•••	－•••	－•••	－•••	－•••	－	－	－＊．＊	－．．•	－	－	－	－	－	－
Calcium Carbonate	$\bullet \bullet \bullet$	－•••	－．．•	－．．．	－．．．	－•••	－•••		－＊．	$\bullet \bullet \bullet \bullet$	－．．．	－•••	${ }^{\circ} 0 \cdot 0$	$\bullet \bullet \bullet$	－•••	－•••	－•••
Calcium Chlorate	－•••	－•••	－	－．．．	－．．．	－•••	－•••	－	－	－0．•	－．．．	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	－	－	$\bullet \bullet \bullet$	－＊••
Calcium Chloride	$\bullet \bullet \bullet$	－＊．•	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$													
Calcium Chromate	－	－	－	－	－	－	－	－	－	－•••	－．．．	－	－	－	－	－	－
Calcium Cyanamide	－	－	－	－	－	－	－	－	－	－	－$\cdot \bullet$	－	－	－	－	－	－
Calcium Cyanide	$\bullet \bullet \cdot \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$				
Calcium Disulfate	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－	－．．．	－•••	－	－	－0．•	$\bullet \bullet \bullet$	－	－	$\bullet \bullet \bullet$	－•••
Calcium Fluoride	－	－	－	－	－	－	－	－	－	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－•••	－	－
Calcium Hydrate	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－	－	$\bullet \bullet \bullet$	－
Calcium Hydride	－	－	－	－	－	－	－	－	－	－0．•	－．．．	－	－	－	－•••	－	－
Calcium Hydrosulfide	－	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－	－	－

								$\begin{aligned} & \sum_{己}^{u} \\ & \text { U } \\ & \text { ज } \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { O} \\ & \text { ה } \\ & \text { O} \\ & 0 \\ & \vec{y} \end{aligned}$			岂 学 응 몽					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Calcium Hydroxide	－•••	－•••	－•••	－＊＊	－•••	－•••	－•••	－＊＊	－＊＊	－•••	－•••	－＊••	－•••	－•••	－•••	－＊＊＊	－•••
Calcium Hypochlorite	$\bigcirc \bullet \bullet$	－＊．•	－＊••	－＊．•	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊＊	－＊•	－＊．•	－．．．	－0．•	$\bigcirc 00 \cdot$	－＊••	－＊．＊	－＊••	－०．०
Calcium Hypophosphite	－	－	－	－	－	－	－	－	－	－0．•	－•••	－	$\bigcirc 00 \cdot$	－	－	－	－
Calcium Hyrodgen Sulfite	－00•	$\bigcirc 0 \cdot \bullet$	－$\bullet \bullet$	－	－	－	－	$\bullet \bullet \bullet$	－＊•	－	－$\bullet \bullet$	－	－	－	$\bullet \bullet \bullet$	－	－
Calcium Lactate	－	－	－	－	－	－	－	－	－	－0．•	－	－	－	－	－	－	－
Calcium Nitrate	$\bullet \bullet \bullet$	－＊••	－＊••	－•••	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊••	－＊•	－$\cdot \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Calcium oxalate	－	－	－	－	－	－	－	－	－	－0．0	－•••	．	－	－	－	．	－
Calcium Oxide	$\bullet \bullet \bullet$	－•••	－．．．	－•••	－．．•	$\bullet \bullet \bullet$	$\bullet \bullet$.	$\bigcirc 0 \cdot \bullet$	－	－．．．	－•••	－＊＊	$\bigcirc \bullet \bullet$	－	－•••	$\bullet \bullet$.	$\bullet \bullet \bullet$
Calcium Permanganate	－	－	－	－	－	－	－	．	－	－	－．．．	－	－	－	－	－	－
Calcium Peroxide	－	－	－	－	－	－	－	－	－	－	－．．．	－	－	－	－	－	－
Calcium Phenosulfate	－	－	－	－	－	－	－	－	－	－0．•	－	－	－	－	－	－	－
Calcium Phosphate	$\bullet \bullet \bullet$	－•••	－．．•	－	－	－	－	$\bullet \bullet \bullet$	－．．．	－．．．	－．．．	－＊＊	$\bullet \bullet$.	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Calcium Propionate	－	－	－	－	－	－	－	．	－	－0．•	－•••	－	－	－	－	－	－
Calcium Salts	－•••	－．．•	－．．॰	－．．•	－．．•	－•••	$\bullet \bullet \bullet$	－＊•	－．．•	－．．．	－•••	－•••	－$\bullet \bullet$	－•••	－•••	－$\bullet \bullet$	－•••
Calcium silicate	－•••	－．．．	－＊．	－．．．	－．．．	－•••	－•••	－	－	－．．．	－•••	－•••	－	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Calcium Stearate	－	－	－	－．．．	－•．．	$\bullet \bullet \bullet$	－•••	－	－	$\bigcirc \bullet \bullet$	－•••	－	－	－	－	－	－
Calcium Sufamate	－	－	－	－	－	－	－	－	－	$\bigcirc \bullet \bullet$	－．．．	－	－	－	－	－	－
Calcium Sulfate	－•••	－．．．	－＊．＊	－．．．	－．．．	－＊．＊	$\bullet \bullet$.	－	－	－0．0	－•••	$\bigcirc 00 \bullet$	－＊＊	\checkmark	－	－．．•	－०••
Calcium Sulfide	－•••	－．．．	－•••	－•••	－．．．	－•••	－•••	－＊••	－•••	－•••	－•••	－＊••	－•••	－＊．＊	－•••	－•••	－．．．
Calcium Sulfite	－•••	－．．．	－．．．	－．．．	－．．．	－•••	$\bullet \bullet$.	－．．•	－．．．	－．．．	－•••	－•••	－．．．	－＊．．	－•••	－•••	－＊．•
Calcium Thiocyanate	－	－	－	－	－	－	－	－	－	－0．0	－•••	－	－	－	－	－	－
Calcium Thiosulfate	－．．	－．．．	－•••	－．．．	－．．．	－•••	$\bullet \bullet$.	$\bullet \bullet$.	－．．．	－．．．	－．．．	－•••	－•••	－＊．	－•••	－•••	－＊．
Calcium Tungstate	－	－	－	－	－	－	－	－	－	－0．•	－•••	－	－	－	－	－	－
Calcuim Gluconate	－	\cdot	－	－	－	－	－	－	－	－．．．	－•••	－	－	－	－	－	－
Caliche Liquors	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\stackrel{\bullet \bullet}{ }$	$\bullet \bullet \bullet$	－＊＊	$\bullet \bullet \bullet \bullet$	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$				
Camphene	－	－		－．．．	－．．．	－＊．＊	－．．．	－	－	－．．．	－．．．	－	－	－	－	－	－
Camphor	－•••	－•••	－＊．	－．．．	－．．．	－＊＊	$\bullet \bullet . \bullet$	－	－	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－•••	－	\checkmark
Cane Sugar Liquors	$\bullet \bullet \bullet$	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊＊	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$			

								$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { ज } \end{aligned}$				$\begin{aligned} & \text { 岂 } \\ & \text { 品 } \\ & \text { 응 } \\ & \text { 롱 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Caproic Acid	－	－	－＊••	－•••	－•••	－＊••	$\bullet \bullet \bullet$	－	－	－•••	－＊．•	－	－	－	－	－	－
Caproic Aldehyde	－	－＊•	－0．•	$\bigcirc 00$－	$\bigcirc 00$－	－00•	－0．•	－＊＊	－0．•	－	－＊．•	－	－	－	－0．•	－	－
Caprolactum	$\bullet \bullet \bullet$	－＊••	－0．	－0．	$\bigcirc 00 \cdot$	$\bigcirc 00 \bullet$	$\bigcirc 00 \bullet$	－	－	－•••	－＊••	－	－	－	$\bigcirc \bullet \bullet$	－	－
Carbamate	－0．0		－．．•	－$\cdot \bullet$	－＊．•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－$\bullet \bullet$	－0．0	－$\cdot \bullet$	$\bigcirc \bullet \bullet$	－00•	$000 \cdot$	－＊．•	$\bigcirc \bullet \bullet$	－00•
Carbitol	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊•	－．．•	－$\cdot \bullet$	－•••	$\bullet \bullet \cdot$	$\bigcirc \bullet \bullet$	－＊•	－＊•	－$\cdot \bullet$	$\bigcirc \bullet \bullet$	－00•	$\bigcirc \bullet \bullet$	－$\cdot \bullet$	－＊••	－＊••
Carbolic Acid（Phenol）		$\bigcirc 00$－	－．．．	－．．．	－．．．	－•••	－•••	$\bigcirc 0 \cdot$－	－•••	－00•	－．．．	$\bigcirc 0 \cdot \bullet$	－0．•	$\bigcirc 0 \cdot$－	－．．．	－•••	－00•
Carbon Bisulfide	－	－00•	－．．．	－．．•	－．．．	－•••	－•••	$\bigcirc 0 \cdot$	－＊．	－00•	－•••	－0．	－	$\bigcirc 0 \cdot$－	－＊．	$\bigcirc 00 \cdot$	－00•
Carbon Dioxide，Dry	$\bullet \bullet \bullet$	－＊••	－．．．	－．．．	－．．．	－•••	－•••	－＊••	－．．．	－＊••	－．．．	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－＊••	－．．．	－＊．＊	－＊••
Carbon Dioxide，Wet	$\bullet \bullet \bullet$	\cdots	－$\cdot \bullet$	－．．•	－．．•	－•••	$\bullet \bullet \cdot$	$\bigcirc \bullet \bullet$	$\bullet \bullet \cdot$	－$\cdot \bullet$	－．．•	$\bigcirc \bullet \bullet$	－	－＊••	－$\cdot \bullet$	$\bigcirc \bullet \bullet$	－＊•
Carbon Disulfide	－	－＊．	－．．．	－．．．	－．．．	－．．•	$\bullet \bullet$.	－＊＊	－＊．	－．．．	－．．．	$\bigcirc \bigcirc \bigcirc$	－	－0．	－．．．		－0．•
Carbon Fluorides	－	－	－	－	－	－	－	－	－	－＊．	－．．．	－	－	－	－．．．	－	－
Carbon Monoxide	－•••	－•••	－•••	－•••	－•••	$\bullet \bullet$.	$\bullet \bullet$.	$\bullet \bullet \bullet$	－＊•	－•••	－．．．	－0．•	$\bullet \bullet \bullet$	－＊＊	－．．．	－•••	－०••
Carbon Sulfide	－•••	－	$\bigcirc 00 \cdot$	－	－	－	．	－	－	－	－	$\bullet \bullet \bullet$	－	－	－	－•••	$\bullet \bullet \bullet$
Carbon Tetrabromide	．	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－	－	－
Carbon Tetrachloride	－00•	$\bigcirc 00$－	－•••	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \cdot$	$\bigcirc 00 \cdot$	－0．•	－＊．•	－•••	$\bigcirc 00 \bullet$	－00•	$\bigcirc 0 \cdot$－	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot$－	－00•
Carbon Tetraflouride	－0．\bullet	－．．．	－	－	－	－	－	－	－	－嘍•	－	－00•	－•••	－	－•••	－•••	－00•
Carbonated Beverages	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	－	－	－	－	－0．0	－．．．	－	－	$\bullet \bullet \bullet$	－．．．	$\bigcirc \bullet \bullet$	－	－	－
Carbonic Acid	$\bullet \bullet \bullet$	－．．．	－．．．	－•••	－•••	$\bullet \bullet$.	$\bullet \bullet$.	－．．＊	－．．．	－•••	－•••	－0．0	－．．．	－＊••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Carbonic Anhydride	－•••	－．．．	－．．．	－	－	－	－	$\bullet \bullet \bullet \bullet$	－	－	－	－•••	$\bullet \bullet \bullet$	－	－	$\bullet \bullet \bullet$	－•••
Casein	－•••	－•••	－．．．	－．．．	－．．．	－•••	$\bullet \bullet$.	－．．．	－．．．	－0．0	－•••	－．．．	－	－•••	－	－	－$\bullet \bullet$
Castor Oil	－•••	－＊•	－．．．	－．．．	－．．．	－•••	－•••	－•••	－．．．	－．．．	－．．．	－•••	－•••	－•••	－•••	－＊＊	－•••
Catsup	－•••	－	－．．．	－	－	－	－	－	－	－	－	－．．．	－00•	－	－	－	－$\bullet \bullet$
Caustic Lime	－•••	－•••	－•••	－•••	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－•••	－•••	－•••	－	$\bullet \bullet \bullet$	－•••	－•••	$\bullet \bullet \bullet \bullet$
Caustic Potash	－＊．•	－．．．	－．．．	－．．．	－．．．	－•••	－．．．	－0．0	－0．0	－0．0	－．．．	－0．0	－	－＊．＊	－．．．	－．．．	－．．．
Caustic Soda	－＊•	－•••	－0．0	－0．0	－＊•	－0．0	－0．•	－＊••	－＊•	－＊．＊	－．．．	－•••	－0．－	－•••	－．．．	－•••	－•••
Celloguard	－•••	－．．．	－$\cdot \bullet$	－	－	－	－	－$\cdot \bullet$	－．．．	－．．．	－．．．	－	\checkmark	－	－•••	－	－
Cellosolve	$000 \cdot$	－••	－00•	$\bigcirc 0 \cdot$－	$\bigcirc 00 \cdot$	$000 \cdot$	$\bigcirc 00 \cdot$	$\bigcirc 00 \cdot$	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot$－	－．．．	－00•	－00•	$\bigcirc 00 \cdot$	－＊＊	$\bigcirc \bullet \bullet$	${ }^{000}$
Cellosolve Acetate	$\bigcirc 00 \bullet$	－•••	${ }^{\circ} \stackrel{\text { • }}{ }$	${ }^{\circ} 0 \bullet$	${ }^{\circ} \bullet$	$\bigcirc 00 \bullet$	$\bigcirc 00 \bullet$	${ }^{\circ}$ •	${ }^{\circ} \bullet$	${ }^{\circ} \bullet$ •	－•••		$\bigcirc 00 \bullet$	$\bigcirc 0 \bullet$	－0••	$\bullet \bullet \bullet$	${ }^{\circ} 0 \bullet$

								$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { ت } \end{aligned}$									
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Cellosolve Butyl	－0．•	－＊•	－	－	－	－	－	$\bigcirc 0$.		$\bigcirc 00 \cdot$	－	－0．•	${ }^{\circ} 0 \cdot$	－00•	－＊••	－＊••	－00•
Cellulose Acetate	－＊••	－	$\bigcirc 0 \bullet$	$\bigcirc 0$.	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	$\bigcirc 00 \bullet$	－	－	－०．॰	－•••		$\bigcirc 0 \cdot$	－	－	－	－＊．•
Cellulube A60	$000 \cdot$	－＊•	－0．•	－＊••	－•••	$\bigcirc \bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－0．•	－0．•	$\bigcirc 00 \cdot$	－•••	－00•	－00•	－00•	－＊•	－＊•	${ }^{\circ} 0 \cdot$
Cellutherm 2505A	－＊••	$\bigcirc 00 \cdot$	－•••	－．．．	－．．．	$\bullet \bullet \bullet$	－•••	$\bigcirc 00 \cdot$	－＊•	－＊．•	－＊．．	－0．\bullet	－00•	$\bigcirc 0 \cdot$－	－＊．．	$\bigcirc 0 \cdot$－	－0．•
Cement，Portland	－•••	－．．．	－．．．	－．．•	－．．．	－•••	$\bullet \bullet \bullet$	－	－	－	－＊••	－	－	－	－＊••	－	－
Cerium Sulfate	$\bigcirc 0 \cdot \bullet$	－．．．	－0．•	－	－	－	－	－＊．•	－．．．	－0．•	－＊••	－•••	${ }^{\circ} 0 \cdot$	－•••	－	－•••	－•••
Cerous Chloride	$\bigcirc 0 \cdot \bullet$	－．．．	－0．0	－	－	－	－	－＊．•	－．．．	－0．•	－•••	－•••	－0．	－•••	－	－•••	－•••
Cerous Fluoride	$\bigcirc 0 \cdot \bullet$	－$\cdot \bullet$	－	－	－	－	－	$\bigcirc \bullet \bullet$	－$\cdot \bullet$		－＊••	－＊••	$\bigcirc 00 \cdot$	－•••	－	－$\cdot \bullet$	－•••
Cerous Nitrate	－0．•	－．．•	－0．•	－	－	－	－	－＊••	－．．．	－0．•	－．．．	－•••	${ }^{\circ} 0 \cdot$	－•••	－	－•••	－•••
Cetane（Hexadecane）	－•••	$\bigcirc 00 \cdot$	－．．．	－•••	－．．•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} \times 0 \cdot$	－0．•	－．．•	－＊••	－．．．	$\bigcirc 0 \cdot$－	०००	－•••	$\bigcirc 0 \cdot$	－००－
Cetyl Alcohol	－•••	$\bigcirc 00 \bullet$	－•••	－	－	－	－	$\stackrel{\bullet \bullet}{ }$	－•••	－•••	－•••	－0．•	$\bullet \bullet \bullet$	－••	－	${ }^{\circ} 0 \cdot$	－00•
Chassis Grease	－•••	－0．•	－	－	－	－	－	$\bigcirc 0$.	－	．	－	－0••	－	．	－	－	－
Chaulmoogric Acid	－	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－	－	－
China Wood oil	$\bullet \bullet \bullet$	－0．•	－$\bullet \bullet$	－	－	－	－	$\bigcirc 0$.	－＊•	－．．॰	－•••	－．．•	－0．•	$\bigcirc 0 \cdot$－	－＊．	－	－००•
Chloral	－	－	－	－	－	－	－	－	－	－0．•	－•••	－	－	－	－	－	－
Chloramine	－	－	－0．0	$\bigcirc 00$－	$\bigcirc 0$.	$\bigcirc 0 \cdot$	$\bigcirc 00 \cdot$	－	－	－	－•••	－	－	－	－	－	－
Chloranthraquinone	－＊•	$\bigcirc 00$－	－．．．	－	－	－	－	－	－．．．	－＊••	－•••	－00•	－0．•	－00•	－	－0．	－00•
Chlordane	－．．•	－0．•	－．．•	－．．．	－．．＊	－•••	$\bullet \bullet$.	$\bigcirc \bigcirc$	－＊．	－＊．＊	－．．．	－०••	－	$\bigcirc \bigcirc$	－•••	$\bigcirc 0 \cdot$－	－0．•
Chlorextol	－$\bullet \bullet$	$\bigcirc 00 \bullet$	－•••	－•••	－•••	$\bullet \bullet$.	$\bullet \bullet$.	$\bigcirc 00 \cdot$	－•••	－．．．	－．．．	－＊•	－0．	$\bigcirc 0 \cdot \bullet$	$\bullet \bullet \bullet$	$\bigcirc 00 \cdot$	
Chloric Acid	－	－	－	－	－	－	－	－	－	－०．॰	－．．．	－	－	－	－	－	－
Chloride／Chlorate of Lime		－•••	－•••	－	－	\checkmark	－	$\bigcirc \bullet \bullet$	－•••	－＊•	－•••	－0．•	－0．＊	－	－•••	$\bullet \bullet \bullet$	－०••
Chlorinated Napthalene	$\bigcirc 0 \cdot \bullet$	$\bigcirc 00 \cdot$	－＊．＊	－＊＊	－＊＊	－•••	$\bullet \bullet \bullet$		－＊．＊	\checkmark	－•••	－	－	－	－००．	${ }^{\circ} 0 \cdot$	－
Chlorinated Salt Brine	－00•	$\bigcirc 00 \cdot$	－•••	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－＊••	${ }^{\circ} \stackrel{0}{ }$	－＊＊	－00•	${ }^{\circ} 0 \cdot$	$\bigcirc 00 \cdot$	$\bullet \bullet \bullet \bullet$	$\bigcirc 00 \cdot$	－＊••
Chlorine（Wet）	－	－	－．．•	－	－	－	－		－＊．	－0．•	－•••	－0．•	－0．•	－	－0．•	－	－
Chlorine Dioxide	－0．		－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bigcirc \bullet$	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$	－•••	－00•	$\bigcirc 0 \cdot$	－0．	－0••		${ }^{\circ} 0 \cdot$
Chlorine Trifluoride	－0．	$\bigcirc 0 \cdot$	－00•	－00•	－00•	－00．	${ }^{\circ} 00 \cdot$	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$	－00•	－•••	${ }^{\circ}$－	${ }^{\circ} 0 \cdot$	－00•	－00•	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$
Chlorine Water	${ }^{\circ} \bullet \bullet$	\bigcirc	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－	\bigcirc	－＊＊	${ }^{\circ} 0 \bullet$	${ }^{\circ} 0 \cdot$	－	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \bullet$
Chloroacetic Acid	－00•	－•••	－00•	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$－	－	－00•	－00•	$\bullet \bullet \bullet$	－00•	－00•	－00•	－＊••	－＊••	－०••

												$\begin{aligned} & \text { 岂 } \\ & \text { 落 } \\ & \text { 응 } \\ & \text { 론 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Chloroacetone	$\bigcirc 0 \cdot$	－•••	$\bigcirc \bigcirc$		－०••	$\bigcirc 0 \cdot \bullet$	$\bigcirc \bigcirc$	－0．•	$\bigcirc \bigcirc \bullet$	－0．•	－•••	－0••	$\bigcirc 0 \bullet$	$\bigcirc \bigcirc \bullet$	$\bigcirc \bigcirc \bullet$	$\bigcirc \bullet \bullet$	－00•
Chloroacetonitrile	००••	－	－	－	－	－	－	－	－	－	－	－0••	－	－	－	$\bigcirc \bullet \bullet$	－०••
Chloroacetyl Chloride	－	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－	－	－
m －Chloroaniline	－0．	－＊•	－	－	－	－	－	－	－	－	－．．．	－	－	－	－＊．	－	－
Chlorobenzene	－0．	$\bigcirc 0$.	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－•••	－00•	－＊．•	$\bigcirc 0 \cdot$	－．．．	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$	－＊．．	－00•	－00•
Chlorobenzene Chloride	－	－	－	－	．	－	－	－	－	－＊••	－	－	－	－	－	－	－
Chlorobenzol	$\bigcirc 0 \cdot$	－0．	－•••	－	－	－	－	－0．•	－＊•		－•••	－0．	－	$\bigcirc 0 \cdot$－	－	－00•	－00•
m－c																	
hlorobenzotrifluoride	$\bigcirc 0 \cdot$	－0．	－	－	－	－	－	－00•	－＊••	－	－•••	－	－	－	－	－	－
Chlorobromomethane	－0．	－＊•	－．．•	－．．．	－•••	$\bullet \bullet \bullet$	－•••	－0．•	－＊．	－००．	－．．．	－0．•		$\bigcirc \bigcirc$	－०．•	$\bullet \bullet \bullet$	－००॰
Chlorobromopropane	$\bigcirc \bullet \bullet$	${ }^{\circ} \stackrel{0}{ }$	－＊••	－．．．	－＊＊	－•••	－•••	－	－听	－＊•＊	－．．．	${ }^{\circ} 0 \cdot$	－0••	${ }^{\circ} 0 \cdot$	－	$\bigcirc 00 \bullet$	－00•
Chlorobutadiene	－००•	－0．\bullet	－．．．	－．．．	－．．．	－•••	－•••	－००．	$\stackrel{\bullet \bullet}{ }$	－००．	－．．．	－0．${ }^{\circ}$	－0．•	$\bigcirc 0 \cdot$－	－＊•	－0．\bullet	－00•
Chlorobutane（Butyl Chloride）	$\bigcirc 0 \cdot$	－	－．．．	－．．．	－．．•	－•••	－•••	－	－	－•••	－	－	－	－	－	－0••	－00•
Chlorododecane	－00•	－0．•	－．．．	－	－．．．	－	－•••	－00•	－．．•	－00．	－•••	－00•	－00•	－0．	－•••		－0．•
Chloroethane	$\bullet \bullet \bullet$	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－．．．	－•••	－	－0．	$\bigcirc \bullet \bullet \bullet$	－	－	－	－
Chloroethanoic Acid	－0．	－．．．	－•••	－	．	．	－	－＊••	－0．	－0．	－	$000 \cdot$	－	－	－	－0••	－＊＊＊
Chloroethanol	$\bigcirc 0 \cdot$－	－＊．	－．．．	－	－	－	－	－0．\bullet	$\bigcirc \bullet \bullet$		－•••	$\bigcirc \bullet \bullet$	－	－	－	$\bullet \bullet \bullet$	－＊••
Chloroethyl Alcohol	$\bigcirc 0 \cdot$	－．．．	－．．．	－	－	－	－	$\bigcirc \bigcirc \bullet$	－＊•	－0．	－．．．	－＊•	－	－	－	$\bigcirc \bullet \bullet$	－．．．
Chloroethyl Benzene		$\bigcirc 0 \cdot \bullet$	－•••	－•••	－．．．	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－00•	－．．．	－	－．．．	$\bigcirc 00 \cdot$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－	$\bigcirc 00 \bullet$	${ }^{\circ} 0 \bullet$
Chloroform	－0．•	－0．	－＊•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\stackrel{\bullet \bullet}{ }$	$\bullet \bullet \bullet$	－00•	－0．•	－00•	－．．．	－0．•	－00•	$\bigcirc 00$－	$\bullet \bullet \bullet$		－00•
Chlorohydrin	$\bullet \bullet \bullet$	－＊••	－．．．	－	－	－	－	－	－	－०•	－•••	－	－	－	－＊••	－	－
Chloromethane	$\bigcirc \bullet \bullet$	－0．•	－听	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－00•	－＊•	－	－	－0．•	$\bigcirc 00 \bullet$	${ }^{\circ} \bullet \bullet$	－	$\bullet \bullet \bullet$	${ }^{\circ} 0 \bullet$
Chloromethyl Ether	${ }^{\circ} 0 \cdot$	$\bigcirc \bigcirc \bullet$	${ }^{\circ} 0 \cdot$	－	－	－	－	${ }^{\circ} 0 \bullet$	${ }^{\circ} 0 \cdot$	－	－	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$	${ }^{\circ} \bullet \bullet$	－	－	－
o－Chloronapthalene	－00•	${ }^{\circ} \bullet$	－	－	－	－	－	－00•	－＊••	－00•	－	${ }^{\circ} 0 \cdot$	－00•	${ }^{\circ} 0 \cdot$	－	${ }^{\circ} \stackrel{0}{ }$	${ }^{\circ} 0 \bullet$
Chloronapthalene	${ }^{\circ} \bullet \bullet$	${ }^{\circ} \bullet$	－	－	－	－	－	${ }^{\circ} 0 \bullet$	$\stackrel{\bullet \bullet}{ }$	－0＊＊	－	${ }^{\circ} \stackrel{0}{ }$	－00•	${ }^{\circ}$－	－	$\bigcirc 00 \bullet$	${ }^{\circ} 00 \cdot$
Chloropentafluoroethane	$\bullet \bullet \bullet$	－＊＊	－•••	－	－•••	－	－＊＊	－	－	－	${ }^{\bullet \bullet \bullet}$	－	－	－	$\bigcirc 0 \bullet$	－	$\bullet \bullet \bullet$
Chloropentane	－0．	$\bigcirc \bigcirc$	－$\cdot \bullet$	－	－	－	－	${ }^{\circ} 0 \bullet$	$\stackrel{\bullet \bullet}{ }$	$\bullet \bullet \bullet$	－$\cdot \bullet$	${ }^{\circ} 0 \cdot$	－	－	－	－＊••	${ }^{\circ} 0 \cdot 0$
o－Chlorophenol	－00•	${ }^{\circ} \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－00•	－＊•	－	－•••	${ }^{\circ} 0 \cdot$	－00•	－	－	－00•	${ }^{\circ} 0 \bullet$

								$\begin{aligned} & \text { 山 } \\ & \text { U } \\ & \text { U } \end{aligned}$				$\begin{aligned} & \text { 岂 } \\ & \text { 营 } \\ & \text { 응 } \\ & \text { 롭 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Chloropicrin	－	－	－•••	－•••	－•••	－•••	－•••	－	－	－•••	－•••	－	－	－	－	－	－
Chloroprene	－0．	－0．	－$\bullet \bullet$	$\bullet \bullet \bullet$	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} 00 \cdot$	－•••	－0．	－＊．•	$\bigcirc 0 \cdot \bullet$	－	－	००•	$\bigcirc 0 \cdot$	－00•
Chloropropene	－＊••	$\bigcirc 0 \cdot$－	－•••	－	－	－	－	－•＊•	－0．	－＊••	－•••	－00•	－	－	－	$\bigcirc \bullet \bullet$	－00•
Chloropropylene	－＊．•	－	－．．•	－	－	－	－	－＊．•	－0．	－．．．	－．．．	$\bigcirc 0 \cdot$－	－	－	－	$\bigcirc 0 \cdot$	－00•
Chlorosilane	－	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－	－	－
Chlorosulfonic Acid	$\bigcirc 0 \cdot$	－0．	－0．	－0．	$\bigcirc 00 \cdot$	－0．	－0．	$\bigcirc 0 \cdot$	－0．	－0．	－．．．	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$	$\bigcirc 0 \bullet$	$\bigcirc 0 \cdot$	－00•
Chlorotoluene	$\bigcirc 0 \cdot$	－0．\bullet	$\bullet \bullet \bullet$	－•••	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	$\bigcirc \bullet \bullet$	－0．\bullet	－•••	$\bigcirc 0 \cdot$－	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot$－	－＊••	$\bigcirc 0 \cdot$	－00•
Chlorotriflouroethylene	$\bigcirc 0 \cdot$	－	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	－	－	－	－	$\bigcirc 0 \cdot$	－00•
Chlorox（Sodium Hypochlorite NAOCI） 2	$\bullet \bullet \bullet$	－••	－•••	－．．．	－．．．	$\bullet \bullet \bullet$	$\bullet \bullet . \bullet$	$\bigcirc 00 \cdot$	－•••	－0．	$\bigcirc 00 \cdot$	－••	－••	$\bigcirc 0 \cdot$－		$\bigcirc \bullet \bullet$	－＊••
Cholesterol	－	．	．	－	－	－	．	－	－	－．．．	－．．．	－	－	－	－	．	－
Chrome Alum	$\bullet \bullet \bullet$	－•••	－•••	－•••	－．．．	－•••	－•••	－•••	－	－．．．	－．．．	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－०••	$\bullet \bullet \bullet$	$\bullet \bullet . \bullet$
Chrome Plating Solution	－0．	－0．\bullet	－．．．	－．．•	－．．．	－•••	－．．•	－＊＊	－••	$\bigcirc 00$－	－．．．	－0．\bullet	－00•	－0．	－•••	－00•	－0，•
Chromic Acid	$\bigcirc 0 \cdot$－	－＊•	－．．•	－•••	－•••	－•••	－＊．•	$\bigcirc 0 \cdot \bullet$	－0．•	$\bigcirc 00$－	－．．•	$\bigcirc \bigcirc \bigcirc$	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$	－•••		－00•
Chromic Chloride	－	－	－	－	－	－	．	－	－	－	－．．．	－	－	－	－	－	－
Chromic Fluorides	－	－	－	－	－	－	－	－	－	－	－．．．．	－	－	－	－	－	－
Chromic Hydroxide	－	－	－	－	－	－	－	－	－	－	－＊••	－	－	－	－	－	－
Chromic Nitrates	－	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－	－	－
Chromic Oxide	$\bigcirc 0 \cdot$	－＊•	－•••	－．．•	－•••	$\bullet \bullet$.	－•••	－	－＊．	$\bigcirc 00$－	－．．．	$\bigcirc 0 \cdot$	－0．${ }^{\circ}$		$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－00•
Chromic Phosphate	－	－	－	－	－	－	－	－	－	－	－．．．	－	－	－	－	－	－
Chromic Sulfate	－	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－	－	－
Chromium Potassium Sulfate（Alum） 1	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－	－	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$		$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$
Chromyl Chlorides	－	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－	－	－
Cinnamic Acid	－	－	$\bullet \bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－	－	$\bigcirc \bullet \bullet$	－＊••	－	－	－	－	－	－
Cinnamic Alcohol	－	－	－$\bullet \bullet$	－＊＊	－＊＊	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－${ }^{\bullet \bullet}$	－	－	－	－	－	－＊••
Cinnamic Aldehyde	－	－	－0．0	－0．0	－＊•	－0．0	－0．0	－	－	－＊•	－•••	－	－	－	－	－	－
Circo Light Process oil	－＊．＊	－0．•	－．．．	－．．．	－．．．	－•••	－．．•	${ }^{\circ} 0.0$	－．．．	－．．．	－．．．	－＊•	$\bullet \bullet \bullet$	－00•	－•••	－0．	－000
Citric Acid	－•••	$\bullet \bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	－•••	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••
Citrous oils	$\bullet \bullet \bullet$	$\stackrel{\bullet \bullet}{ }$	$\bullet \bullet \bullet$	－	－	－	－	－0••	－	－	$\bullet \bullet \bullet$	$\bigcirc 00 \bullet$	－	－	－	－＊••	${ }^{\circ} 0 \bullet$

								$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { ت } \end{aligned}$									
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
City Service 65，120， 250	－•••	$\bigcirc 0 \cdot$	－•••	－•••	－•••	$\bullet \bullet \bullet$	－•••	$\bigcirc \bigcirc \bigcirc$	－•••	－•••	－•••	－•••	－＊••	－0．•	－•••	$\bigcirc 0 \cdot$－	－00•
City Service Kool Motor Oil No． 140	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	－＊••	－	－＊••	－	$\bullet \bullet \bullet$	${ }^{\circ} \circ \bullet$	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	－•••	－00•	－＊••	${ }^{\circ} 0 \cdot$	${ }^{\circ}$－\bullet
City Service Pacemaker No． 2	$\bullet \bullet \bullet$		－＊••	－	－＊＊	－	－•••	$\bigcirc 00 \bullet$	－＊••	－•••	－•••	－＊••	－＊••	$\bigcirc 0 \cdot \bullet$	－•••	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot \bullet$
Clorinated Solvents	$\bigcirc 00 \cdot$	$\bigcirc \bigcirc$	－．．．•	－	－．．．	－	－＊．•	$\bigcirc 0 \cdot$－	－．．．	－0．	－•••	$\bigcirc 0 \cdot$	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot \bullet$	－0．	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$－
Clorine（Dry）	－	－	－•••	－	－	－	－	－00•	－＊．•	－०••	－•••	$\bigcirc 0 \cdot$－	$\bigcirc 00 \cdot$	－00•	－०••	－	－
Clorobenzene Triflouride	－	－	－	－	－	－	－	－	－	－＊．	－	－	－	－	－	－	－
Clorox	－•••	$\bullet \bullet \bullet$	－＊••	－＊．•	－＊＊	$\bullet \bullet \bullet$	－•••	－＊•	－＊••	－	－•••	－	－	－	－	－	－
Coal Tar（Creosote）	－•••	－0．	－．．．	－．．•	－．．．	$\bullet \bullet \bullet$	－•••	－0．\bullet	－．．．	$\bullet \bullet \bullet$	－＊••	－•••	－0．•	$\bigcirc 0$. －	－＊••	－0．	－0．•
Cobalt Chloride	－•••	$\bullet \bullet \bullet$	－．．．	－	－	－	－	－••	－．．．	－•••	－．．．	－•••	$\bigcirc 0 \bullet$		－•••	－•••	$\bullet \bullet \bullet$
Cobaltous Acetate	．	．	○○•			$\bigcirc \bigcirc \bullet$	$\bigcirc 0 \cdot$	－	－	－0．•	－．．．	－	－	－	－		
Cobaltous Bromide	－	－	－	－	－	－	－	－	－	－•••	－•••	－	－	－	－••	－	－
Cobaltous Linoleate	－	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－	－	－
Cobaltous Sulfate	－	－	－．．•	－	－	－	－	－	－	－0．•	－．．．	－	－	－	－	－	－
Coconut oil	－•••	－＊•	－．．•	－．．．	－．．॰	－•••	－•••	$\bullet \bullet \bullet$	－．．॰	$\bullet \bullet \bullet$	－•••	－0．	－0．•		－＊．．	－＊••	－००•
Cod Liver oil	－•••	－•••	－．．．	－．．．	－．．．	$\bullet \bullet \bullet$	－•••	－＊．	－．．．	－•••	－＊．．	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bigcirc 0 \cdot \bullet$	－．．．	$\bullet \bullet \bullet$	－00•
Coffee	－•••	－•••	－	－	－	－	－		－	$\bullet \bullet \cdot \bullet$	－	$\bullet \bullet \bullet$	－00•	－	－＊．．	－	－
Coke Oven Gas	－00•	－0．	－•••	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊•	－0．	－•••	－00•	$\bigcirc 0 \cdot$－	－00•	－＊．＊	${ }^{\circ} 0 \cdot 0$	－०••
Coliche Liquors	－＊•	－＊•	－	－	－	－	－	－	－	$\bigcirc \bullet \bullet$	－	$\bullet \bullet \bullet$	－	－．．•	－．．．	$\stackrel{\bullet \bullet}{ }$	$\bullet \bullet \bullet$
Convelex 10	$\bigcirc 0 \cdot$－	००•	－•••	－	－	－	－	$\bigcirc 0 \cdot$－	－	－00•	－•••	$\bigcirc \bigcirc \bigcirc$	－＊•	$\bigcirc 0 \cdot$－	－＊．．	$\bigcirc 0 \cdot$	－0．•
Coolanol	$\bullet \bullet \bullet$	－0．•	－$\cdot \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$		$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－．．．	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	$\bigcirc \bigcirc$	－＊••	${ }^{\circ} \bullet$	${ }^{\circ}$－
Coolanol 25， 45	－•••	－0••	－•••	－	－	－	－	$\bigcirc \bigcirc \bullet$	－•••	$\bullet \bullet . \bullet$	－•••	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊．＊	${ }^{\circ} 0 \cdot 0$	${ }^{\circ} \mathrm{o}$－
Copper Acetate	－＊•	－•••	－0．	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	－0．0	$\bigcirc \bigcirc \bullet$	－0．	－＊••	－•••	－•••	－0．	－0．0	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Copper Ammonium Acetate	${ }^{\bullet \bullet \bullet}$	－•••	${ }^{\circ}$－	－	－	－	－	$\bigcirc 0 \cdot$－		－$\bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	－		－00•	－	－
Copper Arsenate	－•••	－•••	－．．．	－	－	－	－	－	－	－	－	－•••	－	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Copper Borofluoride	－•••	－•••	－．．॰	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	－	－	－	－	－
Copper Carbonate	－00•	－．．．	－	－0．•	－．．＊	$\bullet \bullet \bullet \bullet$	－•••	－	\checkmark	－0．0	－•••	\checkmark	－	－	－	－	－
Copper Chloride	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－•••	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet \bullet$	－＊＊	$\bigcirc \bullet \bullet$	$\stackrel{\bullet \bullet}{ }$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－＊••
Copper Cyanide	－•••	－•••	－＊．•	－•••	－＊．•	－•••	－•••	－•••	－＊．•	－•••	－．．．	$\bullet \bullet \bullet$	－•••	－•••	－＊．．	－•••	$\bullet \bullet \bullet \bullet$

								$\begin{aligned} & \text { 岂 } \\ & \text { OU } \\ & \text { 位 } \end{aligned}$				岂 品 응 온					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Copper Fluoride	－	－•••	－•••	－	－	－	－	－	－	－	－	－	－	－	－	－	－
Copper Gluconate	－	－	－	－	－	－	－	－	－	－०．	－•••	－	－	－	－	－	－
Copper Hydrate	－＊•	－	$\bigcirc 0 \bullet \bullet$	－	－	－	－	－	－	－	－	－	－	－	－	－•••	－०•॰
Copper Nitrate	$\bigcirc \bullet \bullet$	－＊••	$\bullet \bullet \bullet$	－＊．•	－＊•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－•••	－•••	－＊••	－＊••	－	－＊••	$\bullet \bullet \bullet$	－＊••
Copper Oxide	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－	$\bullet \bullet \bullet$	－	－
Copper Plating Solution	－•••	－•••	－．．．	－	－	－	－	－0．•	－0．•	－	－	－＊．•	－0．0	－•••	－	－•••	－．．．
Copper Salts	－•••	－•••	－．．•	－．．•	－•••	－•••	－•••	－•••	－．．．	－•••	－•••	－•••	－•••	－•••	－．．•	－•••	－•••
Copper Sulfate	－•••	－．．．	－．．•	－．．．	－．．．	－•••	－•••	－•••	－．．•	－•••	－．．•	－＊．＊	－00•	－•••	－．．．	－．．•	－．．．
Copper Sulfate 10\％	－•••	－．．•	－	－	－	－	－	－	－	－•••	－	－•••	－＊••	－•••	－．．．	－＊＊	－＊．＊
Copper Sulfate 50\％	－•••	－．．．	－	－	－	－	－	－	－	－•••	－	$\bigcirc \bullet \bullet$	－0．•	－•••	－．．•	－．．•	－．．．
Copper Sulfide	－•••	－	－．．॰	－	－	．	－	－	－	－	－	－	－	－	－	－•••	－○••
Corn Oil	－•••	－0．॰	－．．•	－•••	－•••	$\bullet \bullet$.	－•••	－•••	－．．॰	－•••	－．．•	$\bigcirc 0 \cdot \bullet$	－•••		－•••	－＊••	－0．•
Cottonseed oil	－•••	$\bigcirc \bigcirc \bullet$	－．．．	－．．．	－•••	－•••	－•••	－•••	－．．．	－•••	－．．．	$\bigcirc 0 \cdot \bullet$	$\bullet \bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	－．．．	$\bigcirc \bigcirc \bullet$	－00•
Creosote（Coal Tar）	－•••	$\bigcirc 0$.	－．．॰	－．．．	－．．•	－•••	－$\bullet \bullet$	－00•	－．．＊	－•••	－．．•	$\bigcirc \bullet \bullet$	－0．0	－0．	－．．．	$\bigcirc 0 \cdot$－	－00•
Creosote（Wood Tar）	－•••	－0．	－	－	－	．	－	－	－．．•	－•••	－	－0．•	－0．0	－00•	－＊．＊	$\bigcirc 0 \cdot$	－00•
Cresol（Methyl Phenol）	－0．	$\bigcirc 0 \cdot$－	－．．•	－	－•••	－	－•••	－	－．．．	－०．	－•••	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$	－•••	$\bigcirc 0 \cdot$	$\bigcirc 00 \bullet$
Cresols	－00•	${ }^{\circ}$－	－	－	－	－	－	－00•	－．．．	${ }^{\circ} 0 \cdot 0$	－	$\bigcirc 0 \cdot$	${ }^{\circ} 0 \cdot$	$\bigcirc 0 \cdot$	－•••	${ }^{\circ} 0 \cdot$	－00•
Cresylic Acids	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$－	$\bullet \bullet \bullet$	－．．．	－•••	$\bullet \bullet$.	－•••	$\bigcirc \bigcirc \bigcirc$	－．．．	$\bullet \bullet . \bullet$	－．．．	$\bigcirc 0 \cdot$	${ }^{\circ} \bullet$	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet$	－00•	－00•
Crotonaldehyde	－00•	－•••	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot$－	－0．•	－00•	－0．•	－00•	－•••	－	－．．．	$\bigcirc 0 \cdot$	－00•	－०••	－	－•••	－00•
Crotonic Acid	－0．	－听	－•••	－•••	－•••	$\bigcirc \bullet \bullet$	－•••	－००•	－0．	－•••	－．．．	－	－	－	\checkmark	－	－
Crude oil Sour	－	－	－	－	－	－	－	－	－	－＊．•	－	－०．•	－＊••	$\bigcirc 0 \cdot$	－．．．	－	－00•
Crude oil，Asphalt Base	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot \bullet$	$\bullet \bullet \bullet$	－．．．	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bigcirc \bullet$	$\bigcirc \bullet \bullet$	－•••	－．．．	$\bigcirc 0 \bullet \bullet$	$\bullet \bullet \bullet$		－＊••	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \bullet$
Cumene	－0．0	－0．	－．．•	－．．．	－•••	－•••	－•••	－00•	－＊•	$\bigcirc 00 \cdot$	－．．．	$\bigcirc \bullet \bullet$	－0．0	$\bigcirc 0 \bullet$	－•••	$\bigcirc 0 \cdot$	－00•
Cupric Acetate	－••	－\bullet^{\bullet}	－	－	－	－	－	－	－	－	－	－＊．＊	－	－	－	－•••	－
Cupric Arsenate	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊＊	－	－	－	－	－	－	－	－	－＊＊	－	－	－	－•••	$\bullet \bullet \bullet$
Cupric Carbonate	－•••	－	－．．．	－	－	－	－	－	－	－	－	－＊．•	－	－	－	－$\cdot \bullet$	－0．0
Cupric Chloride	－•••	－•••	－．．．	－	－	－	－	－	－	－	－	－	－•••	－	－	－•••	－．．．
Cupric Cyanide	－•••	－•••	$\bullet \bullet \bullet$	－	－	－	－	$\bullet \bullet \bullet$	－	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$

								$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { ت } \end{aligned}$									
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Cupric Fluoride	－•••	－•••	－•••	－	－	－	－	－	－	－	－	－•••	－	－	－	－•••	－
Cupric Hydroxide	－＊．•	－	－0．๑	－	－	－	－	－	－	－	－	－	－	－	－	－•••	－०••
Cupric Nitrate	－＊＊＊	－＊••	－＊••	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	－	－	－	－•••	－0••
Cupric Sulfate	－＊＊	－＊．•	－＊．•	－＊．•	－＊．•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－＊．•	－＊．•	$\bigcirc \bullet \bullet$	－	－	－＊．•	－•••	－＊．•
Cupric Sulfide	－＊＊	－	－＊••	－	－	－	－	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	－0••
Cutting oil	－＊．•	$\bigcirc 00$－	－．．．	－．．．	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－0．•	－＊•	－$\cdot \bullet$	－．．．	－＊•	$\bullet \bullet \bullet$	$\bigcirc \bigcirc \bigcirc$	－＊．	－0．\bullet	－•••
Cyanide	－	－	－	－	－	－	－	－	－	．	－$\cdot \bullet$	－	－	－	－	－	－
Cyanmide	－	－	－．．．	－•••	－•••	－•••	－•••	－	－	－	－．．．	－	－	－	－	－	－
Cyanogen Chloride	$\bigcirc 0 \cdot$－	－0．•	－＊．	－	－	－	－	－	－	－	－．．．	－	－	－	－0．•	－	－
Cyclohexane	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$	－．．．	－＊．•	－$\cdot \bullet$	$\bullet \bullet \cdot \bullet$	－•••	$\bigcirc 0 \bullet$	$\bullet \bullet \bullet$	－•••	－．．．	$\bigcirc 0 \cdot$	－．．•	$\bigcirc \bigcirc \bullet$	－．．．	$\bigcirc \bigcirc \bigcirc$	－0०•
Cyclohexanol	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$－	－$\bullet \bullet$	－$\bullet \bullet$	－$\bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－00•	－＊．•	－•••	－．．•	$\bigcirc \bullet \bullet$	－	－0．•	－＊．•	$\bigcirc 0 \cdot$－	－0••
Cyclohexanone	$\bigcirc \bigcirc \bullet$	－०••	$\bigcirc 00$－	$\bigcirc 0 \cdot$－	－0．\bullet	－00•	－00•	－0．•	$\bigcirc 00$	－0．	－．．．	－00•	－0．•	$\bigcirc \bigcirc \bullet$	－0．•	－＊•	－00•
Cyclohexene	－	－	－•••	－＊．	－＊•	$\bigcirc \bullet \bullet$	－＊＊＊	－	－	－＊．•	－．．．	－	－	－	－	－	－
Cyclohexylamine	－0．•	$\bullet \bullet \bullet$	－0．	$\bigcirc 0$.	－0．\bullet	－00•	－0．0	－00•	$\bigcirc 0$.	－•••	－．．．	－0．\bullet	－0．－	－0．\bullet	－	$\bullet \bullet \bullet$	－
Cyclohexylamine Laurate	－•••	－0．	－．．．	－	－	－	－	－＊••	－＊．	－•••	－．．．	－00•	－•••	－•••	－	－0．	－00•
Cyclopentadiene	－	－	－0．•	－＊．•	－．．．	－0．•	－＊．•	－	－	－．．．	－．．．	－	－	－	－	－	－
Cyclopentane	$\bigcirc \bullet \bullet$	－0．	－．．•	－•••	－．．．		－•••	－	－	－．．．	－．．•	$\bullet \bullet \bullet$	－	－	－＊•	－00•	－00•
Cyclopentanol	－＊．＊	－	－＊．	－	－	－	－	－	－	－	－	－	－	－	－	－00•	－00•
Cyclopolyolefins	$\bullet \bullet \bullet$		－00•	$\bigcirc 0 \cdot$－	－0．	－00•	－00•	－00•	－＊••	－•••	－$\bullet \bullet$	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet$	－0••	－＊•	$\bigcirc \bigcirc$	－00•
Cymene	－0．•	－0．\bullet	－＊••	－	－	－	－	－0．•	－．．．	$\bigcirc 0$.	－．．．	$\bigcirc 0 \cdot$	－0．\bullet	$\bigcirc \bigcirc$	－		－00•
Decalin	$\bigcirc 0 \cdot$－		－．．．	－	－	－	－	$\bigcirc 0 \cdot$－	－．．．	－0．	－•••	－0．	－	－0．\bullet	－•••	－0．\bullet	－00•
n－Decane	－•••		－＊••	－	－＊••	－	－•••	${ }^{\bullet \bullet \bullet}$	－•••	－＊＊	－．．．	－0••	－	－	－•••	－	－
Decane	$\bullet \bullet \bullet$		－．．．	－＊．	－．．．	－•••	－•••	$\bullet \bullet \bullet$	－．．•	－•••	－．．．	－00•	－＊•	$\bigcirc \bullet \bullet$	－嘍•	－0．\bullet	－00•
Degreasing Fluid	－0．	－0．\bullet	－	－	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	－	－	${ }^{\circ} \bullet \bullet$	－00•
Dehydrated Alcohol	－＊••	－＊••	$\stackrel{\bullet \bullet}{ }$	－	－	－	－	$\bullet \bullet \bullet \bullet$	－	－	\bullet	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Deionized Water	－听	－．．．	－．．．	－•••	－•••	$\bullet \bullet \bullet$	－•••	－	－	－	－．．．	－＊••	－	－	－．．．	－•••	－－．．
Delco Brake Fluid	－0．•	－．．．	－0．	－	－	－	－	－0．＊	－0．	－0．0	－．．．	$\bigcirc \bullet \bullet$	－	$\bullet \bullet \bullet$	－．．．	－＊•	－
Denatured Alcohol	－•••	－•••	－．．•	－•••	－•••	－•••	$\bullet \bullet \bullet$	－•••	－•••	－•••	－．．．	－•••	－00•	$\bullet \bullet \bullet$	－＊＊	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$

		$\begin{aligned} & \text { 山己 } \\ & \text { 山 } \\ & \text { D } \\ & \text { 믈 } \\ & \text { 山己 } \\ & \text { 己 } \\ & \text { ㄹ } \end{aligned}$						$\begin{aligned} & \text { 岂 } \\ & \text { UU } \\ & \text { ज } \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { ज̄ } \\ & \text { 号 } \\ & \vec{\rightharpoonup} \end{aligned}$			$\begin{aligned} & \text { 岂 } \\ & \text { 落 } \\ & \text { 응 } \\ & \text { 롱 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Detergent Solutions	－•••	－•••	－•••	－•••	－•••	－•••	－•••	－•••	－•••	－•••	－•••	－＊••	－•••	－•••	－•••	－•••	－•••
Developing Fluids	－•••	－•••	－＊．•	－＊．•	－＊．•	－•••	－•••	－•••	－＊••	－•••	－•••	－＊••	－	－＊••	－＊••	－•••	－•••
Dextrin	－＊••	－$\bullet \bullet$	－•••	－$\cdot \bullet$	－＊．•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－•••	－	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	$\bullet \bullet \bullet \bullet$
Dextron	－＊＊	$\bigcirc 0$.	－•••	－	－	－	．	－00•	－＊•	－＊••	－＊•	－＊＊＊	$\bigcirc \bullet \bullet$	－00•	－＊••	－0．	－00•
Dextrose	$\bullet \bullet \bullet$	－＊．•	－＊••	－＊••	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－＊••	－•••	－	－＊••	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－	－•••	－•••
Diacetone	$\bigcirc 0 \cdot$－	－．．．	${ }^{\circ} 0 \cdot$	$\bigcirc 00 \cdot$	－0．•	$\bigcirc 00 \bullet$	－•••	$\bigcirc \bigcirc \bigcirc$	${ }^{\circ}$－	－00•	－＊．•	－00•	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \bullet$	－＊．	－•••	－0．•
Diacetone Alcohol	$\bigcirc 0 \cdot$－	－．．．	－0．•	－0．	$\bigcirc 0 \cdot \bullet$	$\bigcirc 00 \bullet$	－••	－	$\bigcirc 00 \cdot$	－0．	－•••	－0．•	$\bigcirc 0 \cdot$－	－00•	－•••	－•••	－0．•
Diamylamine	－＊＊	－．．．	－००•	－	$\bigcirc 0$.	－	－0．\bullet	－००•		－•••	－＊．＊	－००．	－0．	－००－	－	－•••	－＊••
Diazinon	－0．•	$\bigcirc 0 \cdot$	－＊•	－＊•	－•••	$\bigcirc \bullet \bullet$	－＊•	$\bigcirc 0 \bullet$	－••	－०．	－•••	－	－	－	－＊••	－	－
Dibenzyl Ether	－0．	－0．•	$\bigcirc \bigcirc$	$\bigcirc 0 \cdot$	$\bigcirc 0$.	－		－	－		－•••	－००॰	$\bullet \bullet \bullet$	－००•	－0••	$\bullet \bullet \bullet$	－००
Dibenzyl Sebacate	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊•	－＊＊	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－०••	－0••	－00•	－•••	－00•	$\stackrel{\bullet \bullet}{ }$	$\bigcirc \bigcirc \bigcirc$	$\bullet \bullet \bullet$	$\stackrel{\bullet \bullet}{ }$	－00•
Dibromoethyl Benzene（Alkazene）	－0．	－0．${ }^{\circ}$	－．．．	－．．．	－．．．	－．．．	－•••	－००•	－＊•	－००	－．．．	－००॰	－0．\bullet	－००•	－＊．．	－0．	－00•
Dibromotetrafluoroethane（Freon 114B2） 4	－＊••	－＊••	－•••	－＊•	－＊•	$\bullet \bullet \bullet$	－	$\bigcirc 0 \cdot \bullet$	－	－00•	－	－	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot \bullet$		－•••	－＊••
Dibutyl Cellosolve Adipate	－0．	$\bullet \bullet \bullet$	－	－	－	－	．	－0．•	$\bigcirc 00 \bullet$	－०••	－	－00•	$\bigcirc 00 \bullet$	${ }^{\circ}$－\bullet	－	$\bullet \bullet \bullet$	－
Dibutyl Ether	$\bigcirc 0 \cdot$	－0••	－०••	－0••	$\bigcirc 0 \cdot \bullet$	－0••	－०••	$\bigcirc 00 \bullet$	$\bigcirc 0 \cdot \bullet$	－00•	$\bullet \bullet \bullet \bullet$	－00•	－00•	$\bigcirc 0 \cdot \bullet$	－०••	$\bigcirc \bullet \bullet$	－00•
Dibutyl Phthalate（DBP）	－0．	－．．．	－0．•	－．．．	－0．0	$\bigcirc 0 \cdot \bullet$	－•••	－＊＊	－0．•	$\bigcirc 0 \cdot$	－•••	－00•	－0••	$\bigcirc 0 \cdot \bullet$		－0••	－00•
Dibutyl Sebacate（DBS）	$\bigcirc 0 \cdot$	－＊•	$\bigcirc 00$－	－0．•	－．．．	$\bigcirc 00 \bullet$	$\bullet \bullet \bullet$	－＊＊	－＊••	－0．•	－＊••	－00•	－00•	－00•	－＊＊	－＊••	－00•
Dichlorobenzene	$\bigcirc 0 \cdot$	$\bigcirc 00$－	－．．．	－	－	－	－	－0．•	$\bullet \bullet \bullet$	－0．•	－＊．＊	－००॰	$\bigcirc 0 \cdot$		－	$\bigcirc 0 \cdot$	${ }^{\circ} 0 \cdot$
o－Dichlorobenzene	${ }^{\circ} 0 \cdot$	${ }^{\circ} \bullet$	－$\cdot \bullet$	－	－$\cdot \bullet$	－	$\bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet$	－	－•••	${ }^{\circ} \stackrel{0}{ }$	${ }^{\circ} 0 \cdot$	${ }^{\circ}$－	${ }^{\circ} \bullet \bullet$	${ }^{\circ} \bullet$	${ }^{\circ}$－
Dichlorobutane	$\bigcirc \bullet \bullet$	－0．	－${ }^{\bullet \bullet}$	－＊＊	－$\cdot \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bigcirc \bullet$	$\bullet \bullet \bullet$	－＊••	$\bullet \bullet \bullet \bullet$	－0，•	－0．•	$\bigcirc 00 \bullet$	$\bullet \bullet \bullet$	－००•	－00•
Dichlorobutene	－	－	$\bullet \bullet \bullet \bullet$	－•••	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－＊＊	$\bullet \bullet \bullet \bullet$	－	－	－	－	－	－
Dichloroacetic Acid	－00•	－	－0．\bullet	－0．	$\bigcirc 0$.	$\bigcirc 0 . \bullet$	－0．\bullet	－	－	－＊••	$\bullet \bullet \bullet$	－	－	－	－	${ }^{\circ} \bullet \bullet$	－＊••
Dichlorodifluoromethane（Freon 12） 3	－＊••	$\stackrel{\bullet \bullet}{ }$	$\bigcirc \bullet \bullet$	${ }^{\bullet \bullet \bullet}$	－0••	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－00•	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－	$\bullet \bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	－$\bullet \bullet$		－0••	$\bullet \bullet \bullet$
Dichloroethane	－＊••	${ }^{\circ} \stackrel{ }{ }$	－$\bullet \bullet$	－	－	－	－	－	－＊••	－＊••	－＊••	${ }^{\circ} 0 \bullet$	－0••		－	${ }^{\circ} 0 \cdot 0$	${ }^{\circ} 0$ •
Dichloroethylene	－00•	${ }^{\circ}$－	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	$\bigcirc \bigcirc$	－＊••	－＊＊＊	－00•	－0••	－	－	－$\bullet \bullet$	${ }^{\circ}$－
Dichlorofluoromethane（Freon 21）	${ }^{\circ} 0 \cdot$	$\bigcirc 0$.	$\bigcirc 0$.	$\bigcirc 00$	$\bigcirc 00$	－00•	－00•	－00•	－	－	－＊••	－00•	－	${ }^{\circ} 0 \bullet$	－00•	${ }^{\circ} \bullet \bullet$	${ }^{\circ} \stackrel{\bullet}{ }$
Dichlorohexane	${ }^{\circ} 0$	－	－•••	－	－	－	－	－	－	－	－	－	－	－	－	${ }^{\circ} 0 \cdot$	${ }^{0}$－
Dichlorohydrin	－	－	－	－	－	－	－	－	－	－0••	$\bullet \bullet \bullet$	－	－	－	－	－	－

												$\begin{aligned} & \text { 岂 } \\ & \text { 营 } \\ & \text { 을 } \\ & \text { 론 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Dichloroisopropyl Ether	$\bigcirc 0 \cdot$ •	－०••	－0••	－	－०••	－	－0••	$\bigcirc \bigcirc \bullet$	$\bigcirc \bigcirc \bullet$	$\bigcirc 0 \bullet$	－•••	$\bigcirc 0 \cdot \bullet$	－＊••	$\bigcirc \bigcirc \bullet$	－०••	$\bigcirc 0 \bullet$	$\bigcirc 0 \cdot$
Dichloromethane	$\bigcirc 0 \cdot \bullet$	－०••	－0．๑	－＊••	－＊．•	००••	－＊••	$\bigcirc 0 \cdot \bullet$	－＊••	－＊．•	－	$\bigcirc 0 \cdot \bullet$	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot \bullet$	－	$\bigcirc 0 \cdot$－	
Dichloropentane	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$	－＊．•	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－0．•	－	－	$\bigcirc 0 \cdot$	－	$\bigcirc 0 \cdot$	－	$\bigcirc 0 \cdot$－	－0．•
Dichloropropane	－0．	$\bigcirc 0 \cdot$－	－．．•	－＊．•	－＊．•	－＊．•	－•••	－0．\bullet	$\bigcirc \bullet \bullet$	－＊．•	－	－0．	－	－	－	$\bigcirc 0 \cdot$	－00•
Dichloropropene	－	－	－＊••	－＊．•	－＊．•	－＊••	$\bullet \bullet \bullet$	－	－	－＊••	－•••	－	－	－	－	－	－
Dichlorotetrafluoroethane（Freon 114） 1	－．•	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	－•••	－㒳	－＊••	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－．．．	－	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet$		$\bullet \bullet \bullet$	－•••
Dicyclohexylamine	$\bigcirc 0 \cdot \bullet$		$\bigcirc 00 \cdot$			$\bigcirc 0 \cdot$	$\bigcirc 00 \cdot$		$\bigcirc 00 \cdot$	－0．•	－•••	－00•	${ }^{\circ} 0 \cdot$		－०••	${ }^{\circ} 0 \cdot$	${ }^{\circ} \mathrm{o} \bullet$
Dieldrin	－•••	－0．	－•••	－	－	－	－	－	－．．．	－．．．	－．．．	－0．	－0．•	－0．\bullet	－	－0．	－००॰
Diesel Oil	－•••	－0．	－．．•	－．．．	－＊．•	－•••	－•••	－0．•	－．．•	－．．•	－．．．	$\bigcirc 0 \cdot$	－0••	$\bigcirc 0 \cdot$－	－•••	${ }^{\circ}$－	${ }^{\circ}$－\bullet
Diester Lubricant（MLL－L－7808）	－•••	－0．•	－．．．	－．．．	－．．．	－＊．•	－•••	－००•	－＊．•	－＊．•	－．．．	－0．•	$\bigcirc 0 \cdot$	－००•	－．．．	$\bigcirc 0 \cdot$	－००॰
Diester Synthetic Lubricating Oils	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	$\bigcirc \bigcirc \bigcirc$	－•••	$\bigcirc \bullet \bullet$	－．．．	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$	$\bigcirc \bigcirc \bullet$	－•••	－00•	－0．•
Diethanolamine（DEA）	－	－．．．	－	－	．	－	－	－००－	－0．	－0．॰	－．．．	－0．	－0．	－0．•	－	－•••	－．．．
Diethyl Amine	－0．•	－＊．•	$\bigcirc 00$－	－	．	－	－	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$	－	－．．．	－••	－0．•	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	－＊••	－＊••
Diethyl Aniline	－0．	－．．•	－	－	－	－	－	－	$\bigcirc 0$.	－०．॰	－．．．	－0．	－	－0．•	－	$\bullet \bullet \bullet$	－
Diethyl Benzene	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$－	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	－0••	－	－•．．	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot \bullet$	－०．•	$\bigcirc 0 \cdot$ •	${ }^{0} 0 \bullet$
Diethyl Carbinol	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet \bullet$	－	－	－	－		－	－	－	$\bullet \bullet \bullet$	－0••	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Diethyl Carbonate	－00•	－0．•	－．．•	－＊．•	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot \bullet$	－＊．＊	－0．•	－•••	－00•	$000 \cdot$	$\bigcirc 00 \cdot$	－	${ }^{\circ} 0 \cdot 0$	－00•
Diethyl Ether	－0．	－0．\bullet	－0．	－0．	－0．	－0．	－0．		－0．•	$\bigcirc 0 \cdot$	－＊••	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot \bullet$	$\bigcirc \bigcirc \bullet$	－0．•	－00•
Diethyl Formaldehyde	$\bigcirc 0 \cdot \bullet$	－•••	$\bigcirc 0 \bullet$	－	－	－	－	${ }^{\circ} \bullet \bullet$	$\bigcirc 0 \cdot$	－	－	${ }^{\circ} 0 \cdot$	$\bigcirc 0 \cdot$－	${ }^{\circ} 0 \cdot$	－	－	－
Diethyl Hydrazine	－0••	－＊••	${ }^{\circ} \bullet$	－	－	－	－	${ }^{\circ} \bullet \bullet$	${ }^{\circ} \bullet$	－	－	－0••	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet$	－	－	－
Diethyl Ketone	$\bigcirc 0 \cdot$	$\stackrel{\bullet \bullet}{ }$	$\bigcirc \bigcirc \bullet$	－	－	－	－	－	－	－	－	${ }^{\circ} \bullet$ •	－	－	－	$\bigcirc \bullet \bullet$	${ }^{\circ}$－
Diethyl Oxide	$\bullet \bullet \bullet$	$\bigcirc 0$.	－	－	－	－	－	－	－	－	－	－0••	－•••	$\bullet \bullet \bullet$	－	－0••	${ }^{\circ}$－\bullet
Diethyl Phthalate	${ }^{\circ} 0 \cdot$	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	－	－•••	－	－＊••	－०••	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	－•••	－	－	－	$\bigcirc \bullet \bullet$	－•••	${ }^{\circ}$－
Diethyl Sebacate	－00•	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	－	$\bullet \bullet \bullet$	－	－＊••	－＊•	$\bigcirc \bullet \bullet$	－0••	－＊＊	${ }^{\circ} 0 \cdot$	－00•	$\bigcirc 0 \cdot \bullet$	－＊•	$\bigcirc \bullet \bullet$	${ }^{\circ} \bullet$
Diethyl Sulfate	${ }^{\circ} 0 \cdot$	－•••	$\bigcirc 0 \cdot$	－	－	－	－	$\bullet \bullet \bullet$	$\bigcirc \cdot \bullet$	－	$\bullet \bullet \bullet \bullet$	－•••	${ }^{\circ} 0 \cdot$	－•••	－＊＊•	$\bullet \bullet \bullet$	${ }^{\circ} 0 \bullet$
Diethylene Glycol	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$－		－00•	－00•	$000 \cdot$	$\bullet \bullet \bullet$	－•••	－•••	－＊＊	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$
Difluorodibromomethane	${ }^{00} \cdot$	$\bullet \bullet \bullet$	－	－	－	－	－	${ }^{\circ} \bullet$	－	${ }^{\circ} \bullet$	－	${ }^{00}$ •	${ }^{\circ}$－	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet$	$\stackrel{\bullet \bullet}{ }$	${ }^{0}$－
Difluoroethane（Freon 152A）	$\bullet \bullet \bullet$	－•••	－00•	－	－00•	－	－00•	－	－	－＊••	－＊••	－	－	－		$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$

								$\begin{aligned} & \text { 岂 } \\ & \text { OU } \\ & \text { 位 } \end{aligned}$									
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Diglycol Chloroformate	－	－	－	－	－	－	－	－	－	－0••	－•••	－	－	－	－	－	－
Diglycolic Acid	－	－	－	－	－	－	－	－	－	$\bigcirc \bigcirc \bullet$	－＊••	－	－	－	－	－	－
Dihydroxydiphenylsulfone	－	－	－	－	－	－	－	－	－	－0．•	－．．•	－	－	－	－	－	－
Diisobutyl Carbinol	－＊．•	$\bigcirc 0 \cdot$	－＊．•	－	－	－	－	－＊．．	－＊．•	－•••	－．．．•	$\bigcirc 00 \cdot$	$\bullet \cdots$	－＊．＊	－	$\bigcirc 0 \cdot \bullet$	－00•
Diisobutyl Ketone	$\bigcirc 0 \cdot$－	－•••	$\bigcirc 0 \cdot$	－	$\bigcirc 0 \cdot$	－	$\bigcirc 0 \cdot$ •	$\bigcirc 0 \bullet$	$\bigcirc 0 \cdot$	－	－$\bullet \bullet$	${ }^{\circ} 0 \cdot$	$\bigcirc 00 \bullet$	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	${ }^{\circ} 0 \bullet$
Diisobutylene	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	－0．	－0．	$\bigcirc 0 \cdot$	－0．	$\bigcirc 0 \cdot$－		－०．•	－．．•	－．．．	－00•	－0．	$\bigcirc 0 \cdot$	－听	－0．	－00•
Diisooctyl Adipate	$\bigcirc 0 \cdot$－	－	－0．•	－	－	－	－	－	－	－	．	－	－	－	－	－•••	－00•
Diisooctyl Phthalate	－0．	－$\bullet \bullet$	－0．๑	．	－	．	－	－	－	－	－．．．	$\bigcirc 0 \cdot$	－	－	－	－•••	－0०•
Diisooctyl Sebacate（DISO）	$\bigcirc \bigcirc \bullet$	$\bigcirc \bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	－＊•	－＊••	$\bigcirc \bullet \bullet$	$\bullet \bullet$.	－0••	－०••		－．．．	${ }^{\circ} 0 \cdot$	－00•	$\bigcirc 00 \cdot$	－＊••	${ }^{\circ} \stackrel{\bullet}{ }$	－00•
Diisoprene	－0．•		$\bullet \bullet \bullet$	－	－	－	－	－	－	－	－	－0．•	－	－	－	$\bigcirc 0 \cdot \bullet$	－00•
Diisopropyl Amine	$\bigcirc \bullet \bullet$	－	－	－	－	－	－	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	－＊＊
Diisopropyl Benzene	－0．	－0．${ }^{\circ}$	－．．．	－．．．	－$\cdot \bullet$	$\bullet \bullet \bullet$	－•••	－००	－＊．	－＊．•	－•••	$\bigcirc 00 \cdot$	－00•	${ }^{\circ} \stackrel{0}{ }$	－	$\bigcirc \bigcirc \bigcirc$	－0．•
Diisopropyl Ether（DIPE）	$\bigcirc \bullet \bullet$	${ }^{\circ} 0 \cdot$	－•••	$\bullet \bullet \bullet \bullet$	－•••	$\bigcirc \bullet \bullet$	$\bullet \bullet . \bullet$	$\bigcirc 0 \cdot \bullet$	－0．•	－嘍•	－	${ }^{\circ} 0 \cdot$	－	－	－	${ }^{\circ} 0 \cdot$	－＊＊
Diisopropyl Ketone	－0．	－${ }^{\bullet \bullet}$	－0．	$\bigcirc 0$.	－0．	－0．\bullet	－0．${ }^{\text {－}}$	－0．	－0．	－	－•••	－00•	－00•		$\stackrel{\bullet \bullet}{ }$	$\bullet \bullet \bullet$	－00•
Diisopropylidene Acetone（Phorone） 5	－•••	－0．	－0．\bullet		－0．\bullet		－0．－	－	－＊••	－	－	－	$\bigcirc 00 \cdot$	－		－	－00•
Dilaurel Ether	$\bigcirc \bullet \bullet$	－	－	－	－	－	－	－0．	－	－	－	－	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	－	－	－00•
Dimethyl Acetemide	－	－	$\bigcirc 0 \cdot$	$\bigcirc 0 \bullet$	$\bigcirc 0 \cdot$	${ }^{\circ} 0 \cdot$	$\bigcirc 0 \cdot$ •	－	－	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－	－	－	－	－	－
Dimethyl Aniline（Xylidine）	$\bigcirc \bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－00•	$\bigcirc 0 \cdot$		－0．•	$\bigcirc 0 \cdot$－	$\bigcirc \bigcirc \bullet$	$\bigcirc 0 \cdot$	$\bigcirc \bullet \bullet$	－．．．	－00•	$\bigcirc 0 \cdot \bullet$		－	$\bigcirc \bullet \bullet$	－00•
Dimethyl Benzene	$\bigcirc 0 \bullet$	$\bigcirc 0$.	－＊＊＊	－	－	－	－	${ }^{\circ} \bullet$	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$－	－•••	－0．	$\bigcirc \bullet \bullet$	${ }^{\circ} 0$	$\bigcirc 0 \cdot$－	${ }^{\circ} \stackrel{\bullet}{ }$	${ }^{\circ} 00$
Dimethyl Carbinol	$\bigcirc \bullet \bullet$	－＊••	－$\cdot \bullet$	－	－	－	－	－＊••	－	－	－	$\bullet \bullet \bullet$	$\bigcirc 00 \bullet$	－	－	$\bullet \bullet \bullet$	－$\bullet \bullet$
Dimethyl Ether	$\bigcirc 0 \cdot$－	－＊•	$\bigcirc 0 \cdot$	$\bigcirc \bigcirc \bullet$	$\bigcirc 0 \bullet$	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet$	－•••	－•••	－•••	－•••	－	－•••	${ }^{\circ} \bullet$	$\bigcirc \bullet \bullet$	－
Dimethyl Fomaldehyde	－	－	${ }^{\circ}$－	－०••	－0••	${ }^{\circ} 0 \cdot$	$\bigcirc \bullet \bullet$	－	－	－०••	－	－	－	－	－	－	－
Dimethyl Formamide（DMF）	$\bigcirc \bullet \bullet$	$\stackrel{\bullet \bullet}{ }$	${ }^{\circ} \bullet$ •	${ }^{\circ} \bullet$	${ }^{\circ} \bullet$	${ }^{\circ} 0 \cdot$	${ }^{\circ} \bullet \bullet$	${ }^{\circ} \bullet \bullet$		$\stackrel{\bullet \bullet}{ }$	－＊••	${ }^{\circ} \bullet \bullet$	－00•	$\bigcirc 00$－	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \bullet$
Dimethyl Hydrazine	－	－	$\bigcirc 00$－	$\bigcirc 0$.	－0．\bullet	${ }^{\circ} 0 \cdot 0$	$\bigcirc 0$. －	－	－	－०．॰	－＊＊	－	\cdot	－	－	－	－
Dimethyl Ketone	$\bigcirc 00 \cdot$	$\bullet \bullet \bullet$	${ }^{\circ} \bullet$	－	－	－	－	－＊•＊	${ }^{\circ} \bullet$	${ }^{\circ} 0 \cdot$	－＊＊＊	－0••	－00•	$\bigcirc \bullet \bullet$		－•••	${ }^{\circ} 0 \bullet$
Dimethyl Methane	$\bullet \bullet \bullet$	$\bigcirc 0 \bullet$	－•••	－	－	－	－		－＊••	－•••	－•••	－＊••	－＊•	－	－	${ }^{\circ} 0 \cdot$	－00•
Dimethyl Phenol	－00•	－	－00•	－0．\bullet	－0．	－00•	－00•	－	－	－	－	－	－	－	－		${ }^{\circ} 0 \bullet$
Dimethyl Phenyl Carbinol	$\bigcirc \bullet \bullet$	－0．	－•••	－	－	－	－	－	－＊＊	－＊＊＊	－＊＊	－00•	－0••	$\bigcirc 0 \cdot$	－	－00•	－00•

												$\begin{aligned} & \text { 炭 } \\ & \text { 吕 } \\ & \text { 号 } \\ & \text { 롱 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Dimethyl Phenyl Methanol	－＊••	$\bigcirc 0 \cdot$	－	－	－	－	－	－	－＊．．	－＊．•	－•••	－0．•	－0••	－0．	－	－0．\bullet	－00•
Dimethyl Phthalate（DMP）	－00•	－•••	－＊••	－•••	－•••	－＊•	$\bullet \bullet \bullet \bullet$	－	－•••	$\bigcirc 00 \cdot$	－．．．	－0．•	－00•	$\bigcirc 0 \cdot$－	－•••	－•••	－00•
Dimethyl Sulfoxide（DMSO）	－०••	－＊．•	$\bigcirc 0 \cdot$	－	$\bigcirc 00 \cdot$	－	－00•	－	－	－०••	－•••	－＊••	$\bigcirc 00 \bullet$	$\bigcirc 0 \cdot$－		－	－
Dimethyl Terephthalate（DMT）	－0．0	－0••	－＊••	－＊•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊•	－0．	－．．．	－0．	－．．．	－0．	－00•	－0．	－	－	－
Dinitrichlorobenzene	－00•	$\bigcirc 0 \cdot$	－	－	－	－	－	$\bigcirc 0 \cdot$	－＊．•	－＊••	－	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$	－	－	－
Dinitrotoluene（DNT）	－00•	${ }^{\circ} \bullet$	${ }^{\circ} 0 \cdot$	－0．•		${ }^{\circ} 0 \cdot$	－00•	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	－0．•	－＊••	${ }^{\circ} 0 \cdot$	${ }^{\circ} \stackrel{0}{ }$	$\bigcirc 0 \cdot$－	\bigcirc	－00•	${ }^{\circ} 00 \cdot$
Dioctyl Adipate	$\bigcirc 00 \bullet$	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot \bullet$	－	－	－	－	－	－	－	－	${ }^{\circ} 0 \cdot$	－	－	－	$\bullet \bullet \bullet \bullet$	${ }^{\circ} 00 \bullet$
Dioctyl Amine	－＊••	－＊••	－0．	－	－	－	－	－0．	$\bigcirc 0 \cdot$	－	－•••	－0．	－0．0	－0．	－	－•••	－＊••
Dioctyl Phthalate	－ 0 －	－＊．•	－0．\bullet		－0．•	－0．${ }^{\circ}$	－00•	－0．•	－•••	－0．	－．．．	－0．${ }^{\circ}$	－0．\bullet	$\bigcirc 0 \cdot$－	－＊．•	－•••	－0．•
Dioctyl Sebacate	－००॰	$\bigcirc \bullet \bullet$	－•••	－•••	－．．．	$\bullet \bullet \bullet$	－•••	－0．•	－०．॰	$\bigcirc \bigcirc \bigcirc$	－．．．		$\bullet \bullet \bullet$	${ }^{\circ}$－	－．．．	－＊．	${ }^{\circ}$－\bullet
Dioxane	－00•	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$	$\bigcirc 0 \bullet$	$\bigcirc \bigcirc \bullet$	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \bullet$	$\bigcirc 0 \cdot$	$\bigcirc \bigcirc \bullet$	$\bigcirc \bullet \bullet$	－．．．	$\bigcirc 0 \cdot$－	$\bigcirc \bigcirc \bigcirc$	$\bigcirc 0 \cdot$－	－0••	－＊••	－00•
Dioxolane	－0，•	－禹	－0．		$\bigcirc 0$.	－00•	－00•	－0．	－0．	－0．	－．．．	－0．	－0．•	－0．	－०．•	－०．॰	－0．＾
Dipentene	－＊••	$\bigcirc 0 \cdot$－	$\bullet \bullet \bullet \bullet$	－＊••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	－•．．	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$		$\bigcirc 0 \cdot$	${ }^{\circ} 0 \cdot$
Diphenyl（Biphenol）	－00•		－．．．	－．．．	－．．．	－•••	－•••	－00•	－•••	－0．	－．．．	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \bullet$	${ }^{\circ} 0 \cdot$		${ }^{\circ} \bullet \bullet$	${ }^{\circ} 0 \bullet$
Diphenyl Oxide	－00•	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \cdot \bullet$	$\bullet \bullet \bullet$	－0••	－＊．．	－0．\bullet	－．．．	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot \bullet$	－00•	$\bigcirc \cdot \bullet$	$\bigcirc 0 \cdot$	－00•
Diphenylamine（DPA）	－	－	－	－	－	－	－	－	－	$\bigcirc \bullet \bullet$	－＊••	－	－	－	－	－	－
Diphenylene oxide	－	－	－•••	－．．．	－	－	－	－	－	－	－．．．	－	－	－	－	－	－
Diphenylpropane	－	－	－．．．	－．．．	－．．．	－．．•	－•••	－	－	－．．．	－	－	－	－	－	－	－
Dodecyl Benzene	－00•	－	$\bullet \bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \cdot \bullet$	－•••	－	－	－．．．	－•••	－	－	－	－	$\bigcirc 0 \cdot$	－00•
Dow Chemical 50－4	－०••	－．．．	$\bigcirc 0$.	$\bigcirc 0$.		－0．\bullet	－0．•	－	$\bigcirc \bigcirc$	－०．॰	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot \bullet$	－	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	－
Dow Chemical ET378	－00•	－0．•	$\bigcirc \bullet \bullet$	－	－	－	－	$\bigcirc 00$－	－	$\bigcirc 0 \cdot$	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$－	$\bullet \bullet \bullet$	－00．	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$	－00•
Dow Corning 1208，4050， 6620	－•••	－＊＊＊	－＊＊＊	－＊＊＊	－${ }^{\circ}$	－•••	$\bullet \bullet \bullet \bullet$	－•••	－＊＊	－＊＊＊	－＊＊	－•••	$\bullet \bullet \bullet$	－${ }^{\bullet \bullet}$	－＊＊＊	$\bullet \bullet \bullet$	－$\bullet \bullet$
Dow Corning 3，4，11	－•••	－．．•	－．．•	－．．．	－＊．•	－•••	－•••	－0．0	－．．•	－．．•	－•••	－•••	－•••	－＊．•	－．．．	－•••	－•••
Dow Corning 5，33， 44	－•••	－．．．	－．．．	－	－．．．	－	－．．•	－0．＊	－＊．	－．．．	－．．．	－•••	－•••	－．．．	－．．．	－•••	－$\bullet \bullet$
Dow Corning 55	$\bullet \bullet \bullet \bullet$	－＊＊	$\bullet \bullet \bullet \bullet$	$\bigcirc \bigcirc \bullet$	$\stackrel{\bullet \bullet}{ }$	$\bullet \bullet \bullet \bullet$	－＊＊	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$								
Dow Corning F－61	－•••	－．．．	－．．．	－＊＊•	－＊＊＊	－•••	$\bullet \bullet \bullet \bullet$	－＊＊＊	－．．．	－•••	－＊••	－•••	$\bullet \bullet \bullet$	－＊＊＊	－＊＊＊	－＊••	－$\bullet \bullet$
DowGuard	－•••	－•••	－•••	－•••	－．．．	－•••	－•••	－•••	－．．•	－．．．	－．．．	－•••	－0．0	－•••	－．．．	－•••	－•••
DowTherm 209	－०••	－．．．	－．．．	－．．．	－•••	－•••	－＊．•	－0．•	－0．•	－0．•	－．．．	－＊••	－	－	－•••	－＊••	－

CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
DowTherm A	－00•	\bigcirc	－•••	－•••	－•••	－•••	－•••	$\bigcirc 0 \cdot$	－＊••	$\bigcirc 0 \bullet$	－•••	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$	$\bigcirc 0 \bullet$	－＊．•	$\bigcirc 0 \cdot$	－00•
DowTherme	－00•	$\bigcirc 0 \cdot$	－＊．•	－＊．•	－＊．•	－•••	－•••	－0．	－＊．•		－．．．	$\bigcirc 00 \bullet$	－00•	$\bigcirc 0 \cdot$－	－．．．	$\bigcirc 0 \cdot$	－00•
Dowtherm oil	－	$\bigcirc 0 \cdot$	－0．•	－	－	－	－	－＊••	－＊．•	－	－	$\bigcirc 0 \cdot$	－＊•	$\bigcirc 0 \cdot$－	－	$\bigcirc 0 \cdot$	－00•
Dowtherm S．R．－1	－•••	－	－．．•	－	－	－	－	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	－$\bullet \bullet$
Drinking Water	$\bullet \bullet \bullet \bullet$	－＊••	－＊．•	－＊＊	－＊．•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊••	－＊••	－＊．•	－＊•	－0．\bullet	$\bullet \bullet \bullet$	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Dry Cleaning Fluids	－0．•	$\bigcirc 00$－	－．．．	－．．．	－．．．	－•••	－•••	$\bigcirc 0 \cdot$－	－•••	－0．•	－听•	－0．\bullet	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	－0．•	$\bigcirc 0 \cdot$	－00•
DTE Light Oil	$\bullet \bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	－．．．	－．．．	－•••	－•••	－•••	－0．•	－．．．	－．．．	－．．．	－＊•	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$－	－．．．	$\bigcirc 0 \cdot$－	－00•
Dyes，Abrasive	－00•	－	－＊．•	－	－	－	－	－	－	．	－	$\bigcirc 0 \cdot \bullet$	－0．•	－	－	－	－
Dyes，Water Based	－	－	－．．．	－	．	．	－	．	．	．	．	－＊•	－	－	－	－	－
Elco 28 EP Lubricant	－•••	－0．	－．．．	－．．．	－．．．	$\bullet \bullet \cdot$	$\bullet \bullet . \bullet$	－＊••	－．．．	－．．•	－•••	－0．•	－•••	－0．	－．．．	－0．	－००॰
Enamel	－•••	－	－	－	．	－	－	－	．	－	－	$\bullet \bullet \bullet$	－•••	－	－	－	－
Epichlorohydrin	－0．\bullet	－．．．	－0．	－०．॰	－0．•	－00•	－○••	－0．	－0．	－0．	－＊•	－0．	－0．0	－0．		－＊．•	－0．＾
Epoxy Resins	－	－．．．	$\bigcirc 00$－	$\bigcirc 0 \cdot$－	－0．•	－0．	－00•	－	－	－०••	－．．．	$\bullet \bullet \bullet$	－	－	－＊．	$\bullet \bullet \bullet$	－
Esam－6 Fluid	－00•	－•••	－0．		－०••	－00•	－00•	－	－0．	$\bigcirc 0 \cdot$－	－．．．	－＊•	－	$\bullet \bullet \bullet$	$\bigcirc 0$.	－＊••	－
Esso Fuel 208	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet \bullet$	－$\cdot \bullet$	－•••	$\bullet \cdot \bullet \bullet$	－•••	$\bigcirc 0 \cdot$－	－•••	－•••	－．．．	－＊．	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$－	$\bullet \bullet \cdot \bullet$	$\bigcirc 0 \cdot$	－00•
Esso Golden Gasoline	－＊．＊	－0．	－．．•	－．．．	－．．．	－•••	－．．．	－0．	－．．．	－．．．	－．．．	$000 \cdot$	－00•	－0．	－0．•	－0．	－00•
Esso Motor Oil	－•••		－．．．	－．．．	－．．．	－•••	－•••	$\bigcirc 0 \cdot$－	－．．．	－．．．	－．．．	\bigcirc	$\bigcirc 0 \cdot \bullet$	${ }^{\circ} 0 \cdot$	－．．．	$\bigcirc 0 \cdot$	${ }^{\circ} 0 \cdot$
Esso Transmission Fluid Type A	－•••		－．．．	－．．．	－．．．	－•••	－•••	$\bigcirc 0 \cdot$	－．．．	－．．．	－．．．	$\bigcirc \bullet \bullet$	－$\bullet \bullet$	$\bigcirc 0 \cdot$	－．．．	－0．	－00•
Esso WS2812（MIL－L－7808A）	－•••	$\bigcirc 0 \cdot$	－．．•	－•••	－．．．	－•••	－•••	$\bigcirc 0 \cdot$	－．．．	－•••	－．．．	$\bigcirc 00 \cdot$	－00•	$\bigcirc 0 \cdot$－	－．．．	$\bigcirc 0 \cdot$	－00•
Esso XP90－EP Lubricant	－．．．	－0．	－．．．	－．．．	－．．．	－•••	－•••	$\bigcirc 0 \cdot$－	－．．．	－•••	－．．．	－＊•	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	－＊＊		－00•
Esstic 42， 43	－•••	${ }^{\circ}$－	－．．．	－．．．	－．．．	－•••	－•••	$\bigcirc 0 \cdot$－	${ }^{\circ} \mathrm{0}$－	－．．．	－．．．	－•••	－．．•	$\bigcirc 0 \cdot$	－．．．	$\bigcirc \bigcirc \bigcirc$	－00•
ETBE（Ethyl tert－Butyl Ether）	－0．•	－०．॰	－．．．	－．．．	－．．．	$\stackrel{\bullet \bullet}{ }$	－•••	－	－	－0．•	－$\cdot \bullet$	－0••	－	－	－＊••	－	－
Ethane	$\bullet \bullet \bullet$		$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$		$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊••	${ }^{\circ} \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bigcirc 00$－	$\bullet \bullet \bullet$		${ }^{\circ} 0 \bullet$
Ethanethiol	－0．\bullet	－0．•		－•••	－．．．	－••	－•••	－0••	－＊．•	－	－．．．	－00•	－	－	－	$\bigcirc 00 \bullet$	${ }^{\circ} 0 \cdot$
Ethanol	$\bullet \bullet \bullet \bullet$	－＊＊	－	－	－	－	－	$\bigcirc \bullet \bullet$	－•••	－＊＊	－	－＊•	－	$\bullet \bullet \bullet \bullet$	－	$\bullet \bullet \bullet \bullet$	－$\bullet \bullet$
Ethanolamine（MEA）	－＊＊＊	$\bigcirc \bullet \bullet$	－0．	－0．\bullet	$\bigcirc 00$	－00•	－00•	－＊••	$\bigcirc 0 \cdot$－	－＊••	－＊＊•	${ }^{\bullet \bullet} \cdot$	${ }^{\circ} \bullet \bullet$	${ }^{\circ} 0 \cdot$	－＊••	$\bigcirc \bullet \bullet$	－＊＊＊
Ether	－00•	$\bigcirc 0 \cdot$－	${ }^{\circ} 0 \cdot$	${ }^{\circ} \bullet \bullet$	${ }^{\circ} \bullet \bullet$	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot 0$	${ }^{\circ} 0 \cdot$	$\bigcirc \cdot \bullet$	${ }^{\circ} \bullet \bullet$	－•••	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$	${ }^{\circ} \bullet$	－00•	${ }^{\circ} 0 \cdot 0$
Ethyl Acetate	－00•	－＊••	${ }^{\circ} 0 \cdot$	－00•	${ }^{\circ} \stackrel{0}{ }$	－00•	－00•	－＊••	${ }^{\circ} 0 \cdot$	－00•	－•••	－00•	－00•	－00•	－00•	－•••	－00•

								$\begin{aligned} & \text { 岂 } \\ & \text { OU } \\ & \text { जn } \end{aligned}$									
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Ethyl Acetic Acid	－0••	－०••	－०••	－	－	－	－	－	－	－	－	－○••	－	－	－	－0••	－०••
Ethyl Acetoacetate	$\bigcirc 0 \cdot \bullet$	－＊•	$\bigcirc \bigcirc \bullet$	$\bigcirc 0 \bullet$	$\bigcirc 0 \bullet$	－00•		－＊•	$\bigcirc 0 \cdot$	$\bigcirc \bigcirc \bullet$	－•••	$\bigcirc 00 \bullet$	－00•	$\bigcirc \bullet \bullet$	$\bigcirc 0 \bullet$	－＊••	－०．๑
Ethyl Acetylene	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－•••	－
Ethyl Acrylate	－0．	－＊．．	－0．	－0．${ }^{\circ}$	－0．${ }^{\circ}$	－00•	－0．	－＊•	－0．	－0．${ }^{\circ}$	－•••	－0．0	－00•	－0．0	－०．•	－＊．．	－00•
Ethyl Acrylic Acid	－00•	－听	－0．•	－	－	－	－	$\bigcirc 00 \bullet$	－0．	－	－•••	－＊••	－00•	－00•	－	－＊．	${ }^{\circ} 0 \cdot$
Ethyl Alcohol（Ethanol）	$\bullet \bullet \bullet$	－＊••	－＊••	－•••	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－00•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$				
Ethyl Aldehyde	$\bigcirc 00 \cdot$	－•••	－00•	－	－	－	－	$\bullet \bullet \bullet$	－	．	－	－0••	－०••	－	－	－＊••	－0．•
Ethyl Amine	$\bigcirc 0 \cdot$－	－．．．	－0．	$\bigcirc 0$－	－0．	－००॰	－0．	－0．•	－0．	－०．॰	－•••	－००॰	－	－	－	－＊．•	－○••
Ethyl Benzene	${ }^{\circ} \circ$ •	$\bigcirc 0 \cdot$	－$\cdot \bullet$	－＊••	－$\cdot \bullet$	$\bullet \bullet \bullet \bullet$	－•••	$\bigcirc 0 \cdot \bullet$	－•••	$\bigcirc 0 \cdot$	－•••		－00•	$\bigcirc 0 \cdot$－	－०••	$\bigcirc 0 \cdot$	${ }^{\circ}$－\bullet
Ethyl Benzoate	－0．•		－$\cdot \bullet$	－$\cdot \bullet$	－＊．•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bigcirc \bigcirc$	－$\cdot \bullet$	$\bigcirc 0 \cdot$	－＊．•		－00•	$\bigcirc \bigcirc \bullet$	－0．•	－0．•	－००
Ethyl Bromide	${ }^{\bullet \bullet \bullet}$	－0．\bullet	－•••	－．．．	－．．．	－•••	－•••	－0．\bullet	－．．．	－＊．•	－．．．	－0．•	－0．	－0．\bullet	－•••	－0．	－0．•
Ethyl Butanol	－•••	．	－＊．．	－	－	－	－	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$
Ethyl Butyl Acetate	${ }^{\circ} 0 \cdot$	－	$\bigcirc 0$.	－	－	－	－	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$
Ethyl Butyl Alcohol	－	－	－＊•	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	－	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Ethyl Butyl Amine	$\bullet \bullet \bullet$	－	－	－	－	－	－	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet \bullet$	－＊••
Ethyl Butyl Ketone	－00•	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－＊••	－0．•
Ethyl Butyrate	$\bigcirc 0 \cdot \bullet$	－0．	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	$\bullet \bullet \bullet$	－00•	－	－	－	－	${ }^{\circ} 0 \cdot$
Ethyl Cellosolve	$\bigcirc \bullet \bullet$	－＊••	${ }^{\circ} 0 \cdot$	－00•	${ }^{\circ} 0 \cdot$	－00•	－0．•		－	－00•	－	－00•	－00•	$\bigcirc 00 \bullet$	－	－＊••	－
Ethyl Cellulose	－＊••	$\bigcirc \bullet \bullet$	－00•	$\bigcirc 0$.	$\bigcirc 0 \cdot$	－00•	$\bigcirc 00 \cdot$	$\bigcirc \bullet \bullet$		$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－＊••	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	${ }^{\bullet \bullet \bullet}$	－＊••
Ethyl Chloride	$\bullet \bullet \bullet$	－0••	－•••	－＊＊	－＊••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$		$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊＊	－००•	－०••	$\bullet \bullet \cdot$	－＊••	$\bullet \bullet \bullet$	－०••
Ethyl Chlorocarbonate	$\bigcirc 0 \cdot$	$\bigcirc \bigcirc$	－$\bullet \bullet$	－•••	－．．．	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bigcirc \bigcirc \bullet$	－•••	${ }^{\circ} \bullet \bullet$	－00•	$\bigcirc 0 \cdot$－	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	${ }^{\circ}$－
Ethyl Chloroformate	${ }^{\circ} \bullet \bullet$	${ }^{\circ} \bullet$	－	－	－	－	－		－＊••	${ }^{\circ} \stackrel{\text {－}}{ }$	－•••	$\bigcirc 00 \bullet$	－00•	${ }^{\circ} \circ$ •	－	${ }^{\circ} 00$	${ }^{\circ}$
Ethyl Cyanide	${ }^{\circ} 0 \cdot$	${ }^{\circ} \bullet$	${ }^{\circ} \stackrel{0}{ }$	${ }^{\circ} \bullet \bullet$	${ }^{\circ} \bullet$	${ }^{\circ} \bullet \bullet$	${ }^{\circ} \stackrel{0}{ }$	－	－	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet$	－$\bullet \bullet$	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••
Ethyl Diacetate	${ }^{\circ} 0 \cdot$	－	－	－	－	－	－	－	－	－	－	${ }^{\circ}$－	－	－	－	$\stackrel{\bullet \bullet}{ }$	－
Ethyl Dichloride	${ }^{\circ} \bullet$ •	－•••	$\stackrel{\bullet \bullet}{ }$	－	－	－	－	－०••	－•••	－	－＊＊＊	${ }^{\circ} \bullet \bullet$	－00•	${ }^{\circ} 0 \cdot$	－	－0••	${ }^{\circ} \stackrel{\bullet}{ }$
Ethyl Ether	${ }^{\circ} 0 \cdot$	${ }^{\circ} \stackrel{0}{ }$	－00•	－	－	－	－	${ }^{\circ} 0 \bullet$	${ }^{\circ} \bullet \bullet$		$\bullet \bullet \bullet \bullet$	－00•	－0••	${ }^{\circ} 0 \cdot$	$\bigcirc 00$	${ }^{\circ} \bullet \bullet$	－00•
Ethyl Formate	－00•	－＊•	－．．•	－	－	－	－	－	－．．．	$\bigcirc 0 \cdot$－	－＊．＊	－＊＊	－	－00•	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－＊••
Ethyl Formic Ester	${ }^{\circ} 0 \cdot$	－＊．	－०••	－	－	－	－	－	－	－	－	$\bigcirc \bullet \bullet$	－	－	－	－＊••	${ }^{\circ} 0 \bullet$

									$\begin{aligned} & \text { 岂 } \\ & \text { O} \\ & \text { 訁 } \\ & \text { O} \\ & 0 \\ & \vec{Z} \end{aligned}$			$\begin{aligned} & \text { 岂 } \\ & \text { 落 } \\ & \text { 응 } \\ & \text { 롱 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Ethyl Hexanol	$\bullet \bullet \bullet \bullet$	－•••	－•••	－	－	－	－	－＊••	－•••	－•••	－•••	－•••	－00•	$\bullet \bullet \bullet \bullet$	－	－•••	－•••
Ethyl Hexyl Acetate	$\bigcirc 0 \cdot \bullet$	－	$\bigcirc 0 \cdot$	－	－	－	－	－	－	－	－	－	－	－	－	－•••	－00•
Ethyl Hexyl Alcohol	－•••	－＊••	－•••	－	－	－	－	－＊•＊	－＊••	－	－	－•••	－00•	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－•••
Ethyl Hydrate	－•••	－＊．•	－＊．•	－	－	－	－	－•••	－	－	－	－•••	－00•	－	－	－•••	－．．．•
Ethyl Hydroxide	－＊••	－	．	－	－	－	－	－	－	－	－	－＊．	－	－	－	－•••	－•••
Ethyl Iodide	$\bigcirc \bigcirc \bigcirc$	－0••	－＊•	－	－	－	－	－	－	－	－	－0．	－	－	－	$\bullet \bullet \bullet$	－00•
Ethyl Lactate	－	－	．	－	－	－	－	－	－	－0．•	－．．．	－	－	－	－	－	－
Ethyl Mercaptan	－•••	．	－＊．•	－	－	－	－	－०．•	－	－0．	－．．．	－००•	－•••	－0．	－	－0．	－००॰
Ethyl Nitrite	－	．	．	－	－	－	．	－	－	－0．•	－•••	－	－	－	－	－	－
Ethyl Orthosilicate	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	－	－	．	．	－	．	．	－	$\bullet \bullet \bullet$	－	－	－	$\bullet \bullet \bullet$	－0••
Ethyl Oxalate	－•••	－•••	－•••	－	－	－	－	$\bigcirc 0 \cdot$	－＊．•	－0．\bullet	－•••	－0．－	－•••	$\bigcirc 0 \cdot$	－	$\bigcirc 0 \cdot$－	$\bullet \bullet \bullet \bullet$
Ethyl Oxide	－．．•	$\bigcirc 0$.	－0．\bullet	－	－	－	．	－०••	．	－	．	$\bigcirc \bigcirc \bigcirc$	－०．७	－	－	$\bigcirc \bullet \bullet$	－0．＾
Ethyl Pentachlorobenzene	－•••	${ }^{\circ} \cdot$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－00•	－＊•	－0．•	－•••	${ }^{\circ} \bullet$	－00•	${ }^{\circ} 0 \cdot$	－	$000 \cdot$	－00•
Ethyl Phthalate	$\bullet \bullet \bullet$	．	－०．•	－	－	．	－	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	－00•
Ethyl Propionate	$\bigcirc 0 \cdot \bullet$	$\bigcirc 00$－	－	－	－	．	－	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－	－	－	－00	－00•
Ethyl Pyridene	－0．•	－．．．	－0．${ }^{\circ}$	－	－	－	－	－0．	－0．${ }^{\circ}$	－	－＊••	－00•	－00•	－00•	－	－	－
Ethyl Silicate	$\bullet \bullet \bullet$	－．．．	－•••	－	－	－	－	$\bigcirc 0 \cdot$	－•••	－．．．	－•••	$\bullet \bullet \bullet$	－	$\bigcirc \bullet \bullet$	－	$\bullet \bullet \bullet$	－＊••
Ethyl Stearate	．	－	－	－	－	．	－	－	－	－＊．	－	－	－	－	－	－	－
Ethyl Sulfate	$\bullet \bullet \bullet$	－•••	－	－	－	－	－	－＊••	－0••	－	－	$\bullet \bullet \bullet$	－00•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－00•
Ethyl Valerate	－	－	－	－	－	－	－	－	－	－＊．•	－	－	－	－	－	－	－
Ethylamine	－	－		－	－	－	－	－	－	－0．•	－•••	－	－	－	－	－	－
Ethylcyclopentane	$\bullet \bullet \bullet$	$\bigcirc 00 \bullet$	－•••	－＊＊	－＊＊	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} \stackrel{ }{ }$	－＊＊	－＊＊	－•••	－०••	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－＊•	$\bigcirc 00 \cdot$	－00•
Ethylene	$\bullet \bullet \bullet$	－＊••	－•••	－．．．	－．．．	－•••	－•••	－	－•••	－＊••	－•••	${ }^{\circ} \bullet \bullet$	－＊＊	$\bigcirc 0 \cdot$－	－•••	$\bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$
Ethylene Alcohol	－•••	－＊＊	－＊＊	－	－	－	－	－＊＊	－	－	－	－•••	－＊＊	－	－	$\bullet \bullet \bullet$	－$\bullet \bullet$
Ethylene Bromide	${ }^{\circ} \bullet$	$\stackrel{\bullet \bullet}{ }$	－•••	－	－	－	－	－	－	－	－	${ }^{\circ} \bullet \bullet$	${ }^{\circ} 0 \bullet$	${ }^{\circ} 0 \cdot$	－	${ }^{\circ} \bullet$	－
Ethylene Chloride	$\bigcirc 0 \cdot$－	${ }^{\circ} \stackrel{\bullet}{ }$	－＊••	－•••	－•••	－＊••	$\bullet \bullet \bullet \bullet$	${ }^{\circ} \stackrel{\text { • }}{ }$	－＊••	${ }^{\circ} 0 \cdot$	－•••	${ }^{\circ} 0 \bullet$	${ }^{\circ} 0 \bullet$	${ }^{\circ} 0 \cdot$	－•••	$\bigcirc 0 \bullet$	${ }^{000}$ •
Ethylene Chlorohydrin	－00•	－＊•	－．．•	－．．．	－．．．	－•••	$\bullet \bullet \bullet$	－0．•	－＊•	－00•	－．．．	－••	－00•	－＊••	－．．．	－＊••	－＊••
Ethylene Cyanohydrin	－	－	－	－	－	－	－	－	－	－＊••	$\bullet \bullet \bullet$	－	－	－	－	－	－

								$\begin{aligned} & \text { 岂 } \\ & \text { UU } \\ & \text { ज } \end{aligned}$					$\begin{aligned} & \text { 岂 } \\ & \text { x } \\ & \text { 士 } \\ & \text { M } \\ & \vdots \\ & \text { ㅁㅁ } \end{aligned}$				
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Ethylene Diamine	－•••	－•••	－0．•	－0．•	－0．•	－0．	$\bigcirc 0$.	$\bullet \bullet . \bullet$	$\bigcirc 0 \cdot$	－•••	－＊••	－•••	－00•	－•••	－•••	$\bullet \bullet \cdot \bullet$	－＊••
Ethylene Dibromide	－0．•	－0．•	－•••	－•••	－．．．	－＊••	－．．•	－0．	－0••	－00•	－＊••	－0．	－00•	$\bigcirc 00 \cdot$	－	－0••	－००॰
Ethylene Dichloride	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0$.	－．．•	－•••	－＊．•	－•••	－•••	－0．	$\bigcirc 0 \cdot$	－00•	－＊••	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$－	－＊••	$\bigcirc 0 \bullet \bullet$	－0．•
Ethylene Glycol	－•••	－．．．	－•••	－•••	－＊．•	－•••	－•••	$\bullet \bullet \cdot \bullet$	－•••	－＊••	－•••	－•••	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－•••	－•••
Ethylene Glycol Butyl Ether	－0••	－•••	$\bigcirc 00 \cdot$	$\bigcirc 0$.	－0．•	－•••	－•••	－0．•	－0．	$\bigcirc 00 \cdot$	－0．•	－•••	－00•				
Ethylene Hydrochloride		－0．•	－•••	－	－	－	－	－0．•	－०••	－00•	－＊．•	－0．	－00•	$\bigcirc 0 \cdot$	－	－0••	－0．＾
Ethylene Oxide	$\bigcirc \bigcirc \bullet$	$\bigcirc 0 \cdot \bullet$	$\bigcirc 00 \bullet$	$\bigcirc 0 \bullet$－	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	－0．•	－•••	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$	$\bigcirc 0 \bullet$	$\bigcirc 0 \bullet \bullet$	－0．•
Ethylene Trichloride	－००•	－	－．．．	－	－．．．	－	－＊．•	－	－0．0	－००．	－•••	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$	－००．	－0••	${ }^{\circ}$－0．
F－60 Fluid	－•••	－•••	－•••	－．．．	－•••	－•••	－．．．	－0．${ }^{\text {－}}$	－•••	－．．．	－•••	－•••	－•••	－•••	－•••	－•••	－•••
F－61 Fluid	－•••	－．．．	－．．．	－．．．	－．．．	－•••	－．．．	－0．•	－•••	－＊．．	－＊．•	－•••	－•••	－•••	－•••	－•••	－•••
Fatty Acids	－•••	－0．•	－．．．	－•••	－．．．	－•••	－．．•	－0••	－•••	－＊••	－•••	$\bigcirc 00$	－＊．	－0．\bullet	－•••	－0．•	－$\bullet \bullet$
FC－43 Heptacosofluorotributylamine 1	－0．	－．．．	－．．．	－．．．	－．．．	－．．•	－．．．	－0．	－•••	－	－	－•••	－•••	－		－•••	－•••
FC75 \＆FC77（Fluorocarbon）	$\bullet \bullet \bullet$	－．．．	$\bullet \bullet \bullet$	－	－	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－00•	－•••	－	$\bigcirc \bigcirc \bullet$	$\bigcirc \bullet \bullet$	－	－
Ferric Acetate	－0．\bullet	．	－0．•	$\bigcirc 00$－	$\bigcirc 0$－	－0．	$\bigcirc 00 \cdot$	－0．	－	－0．•	－•••	－	－	－	－	－•••	－००॰
Ferric Ammonium Sulfate	－	－	－	－	－	－	－	－	－	－0．•	－•••	－	－	－	－	－	－
Ferric Chloride	$\bullet \bullet$.	－．．．	－•••	－．．•	－．．．	－•••	$\bullet \bullet \bullet$	－＊•	－•••	－•••	－•••	－＊••	$\bullet \bullet$	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	－•••
Ferric Hydroxide	－•••	－．．．	－．．．	－．．．	－．．．	－•••	－．．•		－	－0．•	－•••	－＊．	－	－	－	－•••	－00•
Ferric Nitrate	－•••	－．．．	－．．．	－．．．	－．．．	－．．．	－．．•	$\bigcirc 0 \cdot \bullet$	－•••	－•••	－．．．	－＊．	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－•••	－＊••
Ferric Persulfate	－•••	－	－	－	－	－	－	－	－	－．．．	－	－•••	－	－	－•••	$\bullet \bullet \bullet$	－＊••
Ferric Sulfate	－．．．	－．．．	－．．．	－．．•	－．．．	$\bullet \bullet \bullet$	$\bullet \bullet$.	－0．•	－•••	－．．．	－•••	－＊．	\bigcirc	－•••	－．．．	－•••	－＊••
Ferrous Ammonium Citrate	$\bigcirc \bigcirc \bullet$	－$\cdot \bullet$	－0．0	－	－	－	－	$\bigcirc \bullet \bullet$	－•••	－0．•	－•••	－．．．	－0．	－•••	－	－•••	－•••
Ferrous Ammonium Sulfate	－	－	－．．．	－•••	－．．•	$\bigcirc \bullet \bullet$	$\bullet \bullet$.	－	－	－0．•	－．．．	－．．．	－	－	－	－	－
Ferrous Carbonate	－०••	－•••	－0．•	－	－	－	－	－•••	－•••	－0．•	－•••	－•••	－00•	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－•••
Ferrous Chloride	－•••	－${ }^{\bullet \bullet}$	－${ }^{\bullet \bullet}$	$\bullet \bullet \bullet \bullet$	－•••	－•••	$\bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊．＊	$\bigcirc \bullet \bullet$	－	－	${ }^{\bullet \bullet \bullet}$	－．．．
Ferrous Hydroxide	－•••	－．．．	－．．．	－	－	－	－	－	－	－	－	－•••	－	－	－	－•••	－0．0
Ferrous Nitrate	－•．．	－．．．	－．．．	－	－	－	－	－	－	－	－	－．．．	－	－	－	－•••	－•••
Ferrous Salts	－．．•	－．．．	－．．．	－	－	－	－	－	－	\checkmark	$\bullet \bullet \bullet \bullet$	－•••	$\stackrel{\bullet \bullet}{ }$	－	－	－•••	$\bullet \bullet \bullet \bullet$
Ferrous Sulfate	$\bullet \bullet \bullet$	－•••	－•••	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－0••	$\bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－＊＊	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$

												$\begin{aligned} & \text { 岂 } \\ & \text { 营 } \\ & \text { 응 } \\ & \text { 롭 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Ferrous Sulfide	－•••	－	－•••	－	－	－	－	－	－	－	－	－	－	－	－•••	－	－•••
Fertilizer Salts，Aqueous	－•••	－•••	－．．•	－	－	－	－	－	－	－	－	－•••	－	－	－	－	－
Fish oil	$\bullet \bullet \bullet$	－0．	－．．•	－•••	－．．•	－•••	$\bullet \bullet \bullet$	－•••	－•••	－＊•	－．．．	－••	－＊•	$\bigcirc 00 \cdot$	－	－0．	－00•
Fluorine	－00•	－	－＊．	－＊＊	－＊．	－＊•	－＊••	－0．	－0．	－0．	－．．．	－00•	－00•	－	－	－0．	－00•
Fluorine，Gas	$\bigcirc 0 \cdot \bullet$	－•••	－．．．	－	－	－	－	$\bigcirc 0 \cdot$	－	－	－＊．•	$\bigcirc 0 \cdot$	$\bigcirc 00 \bullet$	－	－	$\bigcirc 0 \cdot$	－00•
Fluorine，Liquid	$\bigcirc \bigcirc$	－0．•	－．．．	－	－	－	－	－	－	－0．•	－．．．	－	－	－	－	－	－
Fluorobenzene	$\bigcirc 00 \cdot$	－00•	－．．•	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－००	－••	－•••	－•••	$\bigcirc 0 \cdot$－	－0．\bullet	$\bigcirc 00 \cdot$	－	－00•	－00•
Fluoroboric Acid	$\bullet \bullet \bullet$	－•••	－	－	－	－	－	－	－	－	－．．．	－	－	－	－	－．．•	－•••
Fluorocarbon Oils	－	－	－	－	－	－	－	－	－	－	－＊．•	－．．•	－	－	－	－＊．•	－＊．＊
Fluorolube	－•••	－•••	－．．．	－	－．．．	－	$\bullet \bullet$.	－•••	－．．	－．．．	－．．．	－•••	－	$\bigcirc 0 \cdot$－	－．．．	－．．．	－0．•
Fluorosilicic Acid	－•••	－＊．＊	－•••	－•••	－．．．	$\bullet \bullet \bullet$	－•••	－•••	－0．•	－•••	－．．．	－••	－	－＊＊	－．．•	－•••	$\bullet \bullet . \bullet$
Formaldehyde	－0．•	－．．．	$\bigcirc 0$.	$\bigcirc 00$－	$\bigcirc 00 \cdot$	－0．	－0．•	－＊．．	－0．•	－0．0	－．．．	－0．\bullet	－0．•	－0．•	$\bigcirc 0$.	－．．．	－．．．
Formamide	$\bigcirc \bigcirc \bullet$	－•••	－0．•	－	－	－	－	－	－	－०．॰	－．．．	－•••	－	－	－＊．	－•••	－
Formic Acid 88\％	$\bigcirc \bullet \bullet$	－•••	$\bigcirc 00$	$\bigcirc 00$－	$\bigcirc 00$－	－00•	－0．	－＊••	－0．•	－．．．	－．．．	－．．•	－0．•	$\bullet \bullet \bullet$	－0．•	－．．＊	－0．•
Freon 11	－＊．•	－00•	－＊•	－＊．	－＊．	－＊•	－•••	－0．	－＊．	－＊．•	－•••	－00•	－	－00•	$\bigcirc 0$.	－0．	－00•
Freon 112	－•••	－0．	－＊．	－．．．	－．．．	－．．•	－•••	－००．	－	－．．．	－．．．	－••	－＊••	－0．	－0．	－0．	－00•
Freon 113	－•••	－0．	－•••	－•••	－0．•	－$\bullet \bullet$	－0．•	－00＊	－0．•	－．．．	－\bullet－	－00•	－•••	－＊•	$\bigcirc 0 \cdot$－	－0．	－
Freon 113 and High and Low Aniline oil 5	－	－	－	－	－	－	－	－	－	－．．．	－	$\bullet \bullet \bullet$	－00•	－＊＊		$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Freon 114	－•••	－0．	－．．．	－．．．	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$		$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$		${ }^{\circ} 0 \cdot$	－
Freon 114B2	－．．．	－00•	－．．．	－嘍•	－．．．	－．．•	－．．．	$\bigcirc 0 \cdot$－	－	－．．．	－	－•••	－	－0．\bullet	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	－00•
Freon 115	－•••	－•••	－＊•	－＊．	－＊•	－．．•	－•••	－००•	－	－	－＊••	－•••	－	－．．．	$\bigcirc 0 \cdot$－	－•＊•	－$\bullet \bullet$
Freon 116	－•．．	－．．．	－	－	－	－	－	－	－	－．．．	－	－•．．	－	－．．．	－	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Freon 12	－•••	－0．•	－0••	－	－	－	－			－•••	$\bigcirc \bullet \bullet$	－$\bullet \bullet$	－•••	－•••	$\bigcirc 0 \cdot$	－0．•	－．．．
Freon 12 and ASTM Oil No． 2 （50／50） 4	－	－•••	－	－	－	－	－＊••	$\bigcirc \bigcirc \bullet$	－．．•	－00•	$\bigcirc \bigcirc \bullet$	－．．•	－00•	－0．		－．．•	$\bullet \bullet \bullet \bullet$
Freon 12 and Sunisco 4 G	－•••	－00．	－	－	－	－	－	$\bigcirc 0 \cdot$－	$\stackrel{\bullet \bullet}{ }$	$\stackrel{\bullet \bullet}{ }$	－	－••	－00•	－0．	－	$\bigcirc 00$	－00•
Freon 13	－•••	－•••	－•••	－	－	－	－	－००•	－0．0	－＊＊•	－	$\bullet \bullet \bullet$	－$\bullet \bullet$	－＊＊	${ }^{\circ} 0$	－${ }^{\bullet \bullet}$	－
Freon 1381	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	－	－	－	－		$\stackrel{\bullet \bullet}{ }$	－＊＊＊	－	$\bullet \bullet \bullet$	－＊＊＊	－＊＊＊	${ }^{\circ} \stackrel{0}{ }$	－•••	${ }^{\circ} \bullet \bullet$
Freon 14	$\bullet \bullet \bullet$	－•••	－•••	－	－	－	－		－	－．．．	－	－•••	－•••	－＊．•	－	－•••	－०．•

								$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { E } \end{aligned}$									
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Freon 142B	$\bullet \bullet \bullet \bullet$	－•••	－0．•	－0．•	－0．•	－00•	$\bigcirc \bigcirc \bigcirc$	－	－	$\bullet \bullet \bullet$	－＊••	－•＊•	－	－•••	－00•	－•••	－•••
Freon 152A	$\bullet \bullet \bullet$	－＊••		－00•	－00•	${ }^{\circ} 0 \cdot$	－00•	－	－	－	－＊＊	－＊＊	－	－•••	－0．	－•••	－•••
Freon 21	$\bigcirc 0 \cdot \bullet$	$\bigcirc 00 \cdot$	$\bigcirc 00 \cdot$	－	－	－	－	$\bigcirc 00 \bullet$	－	－0．＊	－•••	$\bigcirc 0 \cdot$ •	－	$\bigcirc 00 \cdot$	－0．	$\bigcirc 0 \cdot \bullet$	－0．•
Freon 218	$\bullet \bullet \bullet$	－•••	－＊•	－＊••	－＊．	－＊••	$\bigcirc \bullet \bullet$	－	－	－	－＊．．	－．．．	－	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－•••
Freon 22	－00•	－•••	－0．\bullet	－	－	－	－	－00•	${ }^{\circ} 0 \cdot$		－•••	－•••	－00•	$\bullet \bullet \bullet$	－00•	${ }^{\circ} 0 \cdot$	－•••
Freon 22 and ASTM Oil No． 2 （50／50） 4	－	－＊•	－	－	－	－	$\stackrel{\bullet \bullet}{ }$	－००॰	－0．\bullet	－००	－．．．	－	－0．	－0．		$\stackrel{\bullet \bullet}{ }$	－0．\bullet
Freon 31	$\bigcirc 0 \bullet$	－．．．	$\bigcirc 0 \cdot$－	－	－	－	－	$\bigcirc 0 \bullet$	－	－	－＊．．	－＊＊＊	－	－＊••	$\bigcirc 0 \bullet$	－•••	－＊••
Freon 32	－•••	－．．．	－0．	－	－	－	－	－	－	－．．．	－．．．	－•••	－	－•••	－००	－•••	－•••
Freon 502	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	$\bigcirc 0$.	$\bigcirc 0 \cdot$－		－	－	－＊••	$\bigcirc \bullet \bullet$	－•••	－	$\bullet \bullet \bullet$	－००	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Freon BF	－＊••	$\bigcirc 0 \cdot \bullet$	－．．	－．．．	－．．．	－＊••	－＊•		－	－＊．．	－＊．．	－＊．•	－••	－००－	－००	－0．\bullet	－0．＾
Freon C316	－•••	－．．．	－．．．	－＊．	－．．．	－＊••	－•••	－	－	－	－•••	－•••	－	－•••	－	$\bullet \bullet \bullet$	－•••
Freon C318	－•••	－．．．	－＊．	－＊•	－＊．	－＊＊	－•••	－	－	－•••	－＊••	－•••	－	－•••	－0．	－•••	－•••
Freon MF	－＊••	$\bigcirc 00 \cdot$	－0．•	．	－	－	－	－0．•	－＊•	－＊••	－＊．．	$\bigcirc 00$	－0．	$\bigcirc 0 \cdot$		$\bigcirc 0 \cdot$－	$\bigcirc 00$
Freon T－P35	－•••	－．．॰	－．．．	－．．．	－＊．	－＊＊	－．．•	－•••	．	－	－＊．．	$\bullet \bullet \bullet \bullet$	－•••	－•••	－	－•••	$\bullet \bullet \bullet \bullet$
Freon T－WD602	－＊．	－＊．	－＊•	－＊•	－＊．	－＊•	$\bigcirc \bullet \bullet$	－00•	－	－	－0．．	－＊．．	－•••	－＊．＊	－	－•••	－－••
FreontA	－•••	－．．．	$\bigcirc 00 \cdot$	$\bigcirc 00$－	$\bigcirc 00$－	－00•	$\bigcirc 00 \cdot$	$\bullet \bullet \bullet$	－	－	－＊••	－＊．•	－•••	－•••	－	－•••	$\bullet \bullet \bullet \bullet$
Freontc	－•••	－禹	－．．．	－．．．	－．．．	$\bigcirc \bullet \bullet$	－．．	－00•	－	－	－＊．．	－•••	－•••	－＊．．	－	－•••	－00•
Freon TF	－•••	－0．	－．．．	－．．．	－．．．	－＊••	－．．．	$\bigcirc \bigcirc \bigcirc$	－0．	－．．．	－．．．	$\bigcirc 0$.	－．．．	－．．．	－००	－0．	－00•
Freon tMC	－．．•	$\bigcirc \bullet \bullet$	－．．．	－＊．	－．．．	－＊•	－．．•	－0••	－	－	－＊．．	$\stackrel{\bullet \bullet}{ }$	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	－	$\bigcirc \bullet \bullet$	－＊••
Fuel Oil	－•••		－．．．	－．．．	－．．．	－•••	－•••	－0．•	－•••	－＊．＊	－．．．	－00•	－＊•	$\bigcirc 0 \cdot \bullet$	－•••	$\bigcirc 0 \cdot$	－0．•
Fumaric Acid	－•••	－．．	－．．．	－．．．	－．．．	－•••	－•••	－．．•	－．．．	－•••	－•••	$\bigcirc \bullet \bullet$	－	－＊．	－．．．	$\bigcirc 0 \cdot$	－＊•
Fuming Sulfuric Acid	$\bigcirc \bigcirc \bigcirc$	$\bigcirc 0$.	－	－	－	－	－	－0．•	－	－＊•	－	－0．	－0．	－0．	－	－0．•	－0．＾
Furaldehyde	$\bigcirc 0 \cdot \bullet$	$\bigcirc \bullet \bullet$	－00•	－0．\bullet	$\bigcirc 0 \cdot$－	－00•		－		－00•	$\bullet \bullet \bullet \bullet$	${ }^{\circ} \bullet$	－	${ }^{\circ} 0 \cdot$	$\bigcirc 0 \cdot$	－•••	${ }^{\circ}$－
Furan		－0．	$\bigcirc 0 \cdot$	${ }^{\circ} \bullet \bullet$	${ }^{\circ} \bullet \bullet$	${ }^{\circ}$－	${ }^{\circ} \bullet \bullet$		－	－0．•	－＊＊＊	${ }^{\circ}$－	${ }^{\circ} 0 \cdot$	$\bigcirc \bigcirc \bullet$	－0．•	${ }^{\circ} 0 \cdot$	${ }^{\circ}$－
Furfural		$\stackrel{\bullet \bullet}{ }$	${ }^{\circ} \bullet$	${ }^{\circ} \bullet$	${ }^{\circ} \bullet$	${ }^{\circ} \stackrel{\bullet}{ }$	${ }^{\circ} 0 \cdot$	${ }^{\circ} \bullet \bullet$	${ }^{\circ} \bullet$	－0＊	$\bullet \bullet \bullet \bullet$	${ }^{\circ} \bullet$	－•••	－00•	－00•	$\bullet \bullet \bullet$	${ }^{\circ}$－
Furfuraldehyde	$\bigcirc 00 \cdot$	－．．．	－00•	－00•	－00•	－00•	$000 \cdot$	－00•	－0．	－0．•	－．．．	－0．	－00•	$\bigcirc 00 \cdot$	－0．	$\bullet \bullet \bullet$	－00•
Furfuryl Alcohol	$\bigcirc 0 \cdot \bullet$	－＊．	－•••	－•••	－•••	－•••	$\bullet \bullet \bullet$	－00•	$\bigcirc 0 \cdot$－	－0．•	－＊＊＊	－00•	${ }^{\circ} 0 \cdot$	－00•	－＊＊	$\bigcirc \bullet \bullet$	${ }^{0}$－
Furyl Carbinol	${ }^{\circ} \stackrel{\bullet}{ }$	－＊•	${ }^{\circ} 0 \cdot$	－	－	－	－	－00•	${ }^{\circ} \stackrel{\text { • }}{ }$	$\bigcirc 0 \cdot$－	$\bullet \bullet \bullet$	${ }^{\circ} \stackrel{0}{ }$	${ }^{\circ} 0 \bullet$	${ }^{\circ} \bullet \bullet$	－＊＊	$\bigcirc \bullet \bullet$	${ }^{\circ}$－\bullet

								$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { ت } \end{aligned}$				$\begin{aligned} & \text { 岂 } \\ & \text { 营 } \\ & \text { 을 } \\ & \text { 론 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Fyrquel 90100150	$\bigcirc 0 \cdot$ •	－•••	－•••	－•••	－•••	$\bullet \bullet \bullet \bullet$	－•••	－•••	－०••	$\bigcirc 0 \bullet$	－•••	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	$\bigcirc 0 \bullet$	－•••	－＊＊＊	$\bigcirc 0 \cdot$－
Fyrquel A60	－00•	－•••	－•••	－＊．•	－•••	－•••	－•••	－○••	－0．•	－00•	－•••	－0．	${ }^{\circ} 0 \cdot$	－00•	－＊••	－•••	${ }^{\circ}$－\bullet
Gallic Acid	－＊••	－＊•	－＊．•	－	－	－	－	－	－＊．•	－＊••	－•••	－＊••	$\bigcirc 00 \cdot$	－＊••	－＊••	－＊••	－•••
Gasoline Premium Unleaded	－＊••	－0．	－．．．	－＊．•	－＊．•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$000 \cdot$	－．．•	－＊．•	－＊••	$\bigcirc \bigcirc \bullet$	$\bigcirc \bullet \bullet$	$000 \cdot$	－＊．0．	$\bigcirc 00 \cdot$	－00•
Gear oil	－•••	－	－．．•	－	－	－	－	－•••	－	－	－	－	－	－	－•••	－	－
Gelatin	－•••	－•••	－．．．	－＊．•	－＊．	－•••	$\bullet \bullet \cdot \bullet$	－•••	－•••	－＊．•	－＊•	－•••	${ }^{\circ} 00 \cdot$	－•••	－	－•••	－•••
Generator Gas	－•••	－0••	－．．•	－	－	－	－	－••	－	－	－	－＊••	－•••	－	－	－＊••	－○••
Girling Brake Fluid	－0．•	－•••	－0．•	－＊••	－＊••	－0••	－＊••	－	－00•	－०．॰	－	－•••	－	$\bullet \bullet \bullet$	－	－＊＊	－
Glauber＇s Salt	－•••	－＊．．	－•••	－．．．	－．．．	－•••	－•••	－•••	－．．•	$\bigcirc \bigcirc \bullet$	－•••	－＊．•	－•••		－•••	－•••	－＊••
Gluconic Acid	－0．•	－	－0．•	－0．•	－．．．	－0．•	－．．．	．	－	－०．॰	－•••	－	－	－	－	－0．•	$\bigcirc \bigcirc \bigcirc$
Glucose	－•••	－•••	－•••	－•••	－．．．	－•••	$\bullet \bullet \bullet$	－•••	－．．．	－•••	－•••	－＊＊	－0．	$\bullet \bullet \bullet$	－•••	－•••	$\bullet \bullet \bullet$
Glue	－•••	－•••	－．．．	－．．．	－．．．	－•••	$\bullet \bullet \bullet$	－•••	－．．．	－	－＊••	－•••	－•••	－•••	－＊••	－．．•	－＊．•
Glutamic Acid	－	－	－0．•	－0．•	－＊．＊	००••	－＊．•	－	－	－0．•	－．．．	－	－	－	－	－	－
Glycerol（Glycerine）	$\bullet \bullet \bullet$	－•••	－．．．	－．．．	－．．．	－•••	$\bullet \bullet$.	$\bullet \bullet$.	－．．॰	－．．．	－•••	－•••	$\bigcirc 00$	－•••	－•••	－．．•	－•••
Glycerol Dichlorohydrin	－0．•	－•••	－0．0	－	．	－	－	－＊．	－．．．	－0．0	－•••	－•••	$\bigcirc 00 \cdot$	－•••	－	－•••	－•••
Glycerol Monochlorohydrin	－0．•	－•••	－0．•	－	－	－	－	－．．•	－．．．	－0．•	－．．．	－•••	$\bigcirc 0 \cdot$－	－•••	－	－•••	－•••
Glycerol Triacetate	－•••	－•••	－	－	－	－	－	－	－	－0．•	－	－•••	$\bigcirc 00 \cdot$	－	－	－•••	－
Glycerophosphoric Acid	－	－	－	－	－	－	－	－	－	－0．•	－．．．	－	－	－	－	－	－
Glyceryl Phosphate	－•••	$\bullet \bullet \bullet \bullet$	－0．•	－	－	－	－	－．．．	－．．．	－•••	－．．．	－•••	$\bigcirc 00 \cdot$	－•••	－	$\bullet \bullet \cdot \bullet$	$\bullet \bullet \bullet \bullet$
Glycidol	－0．•	－•••	－०．•	－	－	－	－	－．．．	－．．．	－०．॰	－＊．．	－•••	$\bigcirc 0 \cdot$	－•••	－	－＊．．	－．．．
Glycol Ethyl Ether	－•••	－＊．．	－0．		－0．	－00•	$\bigcirc 00 \cdot$	－	－．．．	－	－		－	－	－•••	－•••	${ }^{\circ} \mathrm{O}$－
Glycolic Acid	－	－•••	－	－	－	－	－	－	－	－0．•	－		－0．	－	－	－	${ }^{\circ} \mathrm{o}$－
Glycols	$\bullet \bullet \cdot \bullet$	－•••	$\bullet \bullet \bullet$	－	－	－	－	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$
Grain Alcohol	－•••	－•••	－＊．•	－	－	－	－	－•••	\checkmark	－	－	－•••	－00•	－	－	－•••	－•••
Grease（Machine Oil No．120）	－•••	－0．	－．．•	－．．•	－．．．	－•••	－•••	$\bigcirc 0 \cdot \bullet$	－•••	－	－	$\bigcirc \bullet \bullet$	－	$\bigcirc 0 \cdot$－	－	$\bigcirc 00 \cdot$	－0．•
Grease，Petroleum Base	－•••	－00•	－${ }^{\circ} \cdot$	－	－＊＊＊	－	$\bullet \bullet \bullet \bullet$	${ }^{\circ} 00 \cdot$	－＊＊	－•••	－	$\bigcirc 00 \bullet$	－$\bullet \bullet$	－00•	－$\bullet \bullet$	$\bigcirc 0 \cdot$	－00•
Green Sulfate Liquor	－＊••	－•••	－$\cdot \bullet$	－．．•	－•••	－•••	－•••	－•••	－＊．	－＊．＊	－＊••	－＊．	－•••	－＊•	－•••	－•••	－＊••
Gulf Endurance oils	－•••	－००．	－•••	－•••	－＊．•	－．．．	－•••	－0．	－•••	－•••	－．．．	－•••	－＊．•	$\bigcirc 0 \cdot$－	－•••	－0．	－0．•

												$\begin{aligned} & \text { 岂 } \\ & \text { 落 } \\ & \text { 응 } \\ & \text { 롱 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Gulf FR Fluids	－•••		－	－	－	－	－	－00•	－•••	－•••	－	－＊••	－•••	$\bigcirc 00$－	－	${ }^{\circ} 0 \cdot$	－00•
Gulf frg fluids	－•••	－•••	－	－	－	－	－	－•••	－•••	－•••	－	$\bullet \bullet \bullet$	－＊••	－•••	－	－•••	－•••
Gulf frp fluids	$\bigcirc 0 \cdot$	－＊．•	－	－	－	－	－	－•••	－＊••	$\bigcirc 00 \cdot$	－	$\bigcirc 0 \cdot \bullet$	－00•	$\bigcirc 00 \cdot$	－	－＊••	－00•
Gulf Harmony Oils	－＊．•	$\bigcirc 0$.	－	－	－	－	－	－0．	－•••	－．．•	－	$\bigcirc \bullet \bullet$	－＊••	－0．	－	$\bigcirc 0 \cdot$－	－00•
Gulf High Temperature Grease	－＊．•	$\bigcirc 0 \bullet$	－	－	－	－	－	$\bigcirc 0 \cdot$	－．．．	－．．．•	－	－．．．	－•••	$\bigcirc 0 \cdot$	－	$\bigcirc 0 \cdot$	－00•
Gulf Legion Oils	－＊．•	$\bigcirc 0 \bullet$	－	－	－	－	－	$\bigcirc \bigcirc$	－．．．•	－．．．•	－	－．．．	－．．．．	$\bigcirc 0 \cdot$	－	$\bigcirc 0 \cdot$	－00•
Gulf Paramount Oils	－．．．	$\bigcirc 0 \cdot$－	－	－	－	－	－	－००	－．．•	－．．．	－	－••	－＊••	$\bigcirc 00 \cdot$	－	$\bigcirc 00$	－00•
Gulf Security Oils	－•••	－0．•	－	－	－	－	－	－००－	－．．．	－．．．	－	－．．•	－．．．	－0．	－	－0．	－००॰
Gulfcrown Grease	－＊．•	$\bigcirc 0 \cdot$	－	－	－	－	－	$\bigcirc \bigcirc \bullet$	－•••	－．．．	－	－．．．	－•••	$\bigcirc 0 \cdot$	－	$\bigcirc 0 \cdot$	－00•
Halite	－•••	－•．．	－•••	－	－	－	－	－•••	－	－	－	－•••	－0．•	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Halothane（Bromoclorotrifluoroethane） 4	－＊．＊	－•••	－•••	－•••	－•••	－•••	－．．•	－0．	－0．	$\bigcirc 00$－	$\bigcirc 00$－	$\bigcirc 0 \cdot \bullet$	－00•	$\bigcirc 0 \cdot$－		－0．	－00•
Hatowax Oil	－0．	－0．	－．．．	－．．．	－．．．	－．．•	－•••		－．．．	－0．\bullet	－．．．	－0．\bullet	－	－0．	$\bullet \bullet \bullet$	－00•	－0，•
Hannifin Lube A	－•••	$\bigcirc 00$－		－	－	－	－	－＊•	－．．．	－•••	－	$\bullet \bullet \bullet$	－•••	${ }^{\bullet \bullet \bullet}$	－	$\bigcirc 0 \cdot$	－00•
Hanover（MLL－H－83282）	－．．．	－0．	－．．．	－．．．	－．．．	－．．•	－•••	－0．＊	－．．．	－	－	－＊．•	－＊．＊	－00•	－	$\bigcirc 0 \cdot$	－00•
Heavy Water	－•••	－$\cdot \bullet$	－＊．	－．．．	－．．．	－＊＊	－•••	－•••	－•••	－•••	－•••	－＊•	－00•	－•••	－•••	－•••	－•••
Hecroflex 600	－	－	－．．．	－．．．	－．．．	－•••	－•••	－	－	－	－	－	－	－	－	－	－
HEF－2	$\bigcirc \bullet \bullet$	$\bigcirc 00$－	－．．．	－．．•	－•••	－．．•	$\bullet \bullet . \bullet$	－0．•	－•••	－＊．•	－•••	－00•	－00•	$\bigcirc 00 \cdot$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－00•
HEF－3	－．．．	－0．	－．．．	－．．．	－．．．	－．．．	－．．．		－．．．	－	－	－•••	－00•	－0．	－	－	－
Helium	－•••	－．．．	－．．．	－．．•	－．．．	－•••	－•••	$\bullet \bullet$.	－．．．	－．．•	－•••	－•••	－•••	－•••	－．．•	－•••	$\bullet \bullet . \bullet$
Heptachlor	$\bigcirc 0 \cdot \bullet$	－	－．．．	－．．•	－．．．	$\bigcirc \bullet \bullet$	$\bullet \bullet$.	－	－	－．．•	－．．．	－	－00•	－	－0．•	－	－
Heptachlorobutene	－＊．•	－0．	－．．•	－	－	－	－	－	－＊•	－＊•	－．．．	$\bigcirc 0 \cdot$－	－०••	－	－	$\bigcirc 0 \cdot$	－00•
Heptaldehyde（Heptanal）	－．．•	－	$\bigcirc 0$.	$\bigcirc 0$. －	－0．	$\bigcirc 0$. －	${ }^{\circ} 0 \cdot 0$	－	－	－．．．	－．．．	－	－	－	－	－	－00•
n －Heptane	－•••	${ }^{\circ} \bullet \bullet$	－•••	－	－•••	－	$\bullet \bullet \bullet$	－00•	${ }^{\circ} \bullet \bullet$	－•••	－•••	$\bigcirc 00 \bullet$	－＊••	$\bigcirc 00 \cdot$	－	$\bigcirc 00 \cdot$	${ }^{000}$
Heptanoic Acid	－	－	－．．．	－•••	－．．．	$\bullet \bullet$.	$\bullet \bullet \bullet$	－	－	－．．．	－•••	－	－	－	－	－	－
Hexachloro Acetone	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet$	－0．	$\bigcirc 0 \cdot$－	－0．	－0．	－0．	－0．•	－0．	－0．0	－•••	$\bigcirc 0 \cdot$	－00•	－＊＊	$\bigcirc 0 \cdot$	－•••	－
Hexachlorobutadiene	－	－	－	－	－	－	－	－	－	－＊••	－•••	－	－	－	－	－	－
Hexachlorobutene	－	－	－	－	－	－	－	－	－	${ }^{\bullet \bullet \bullet}$	－	－	－	－	－	－	－
Hexachloroethane	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊•	$\bullet \bullet \bullet$	－	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－	－	－	－	－	－

												岂 营 응 몬					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Hexafluoroethane（F－116）	－	－•••	－•••	－	－	－	－	－	－•••	－	－＊••	－	－	－	－	－	－
n－Hexaldehyde	－00•	－＊••		－	－00•	－	－00•	－＊•		－	－•••	－•••	－＊••	－0．•		－＊••	－0．•
Hexamethylene（Cylclohexane）	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$ •	－	－	－	－	－	－00•	－	－•••	－	$\bigcirc 00 \bullet$	－＊••	－	－	$\bigcirc 0 \cdot$－	－0．•
Hexamethylene Diamine	－0．•	－•••	－0．॰	－	－	－	－	－＊．＊	－•••	－0．•	－＊．．	－•••	－00•	－	－	－．．＊	－•••
Hexamethylene Tetramine	－0••	－．．．	$\bigcirc 0 \cdot \bullet$	－	－	－	－	－＊＊	－．．．	－0••	－＊．．	－•••	$\bigcirc 0 \cdot$ •	$\bullet \bullet \bullet$	－	－•••	$\bullet \bullet \bullet \bullet$
n －Hexane	－•••	－0．	－．．．	－	－．．．	－	－•••	－0．•	－．．．	－．．．	－•••	－•••	－•••	－0．•	－०．•	${ }^{\circ} 0 \cdot$	－0．0
Hexane	$\bullet \bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－$\cdot \bullet$	－	－．．．	－	$\bullet \bullet \bullet$	$\bigcirc 00 \bullet$	－．．．	－•••	－•••	$\bigcirc 00 \bullet$	－＊．	$\bigcirc 00 \bullet$	－०••	－00•	－0．•
Hexene－1／n－Hexene－1	$\bullet \bullet \bullet$	－0．	$\bullet \bullet \bullet$	－	－	－	－	०००•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\stackrel{\bullet \bullet}{ }$	$\bigcirc 0 \cdot$－	००••	－0．	－००
Hexone（Methyl Isobutyl Ketone）	$\bigcirc 0 \cdot$－	－＊•	－	－	－	－	－	－	${ }^{\circ}$－	$\bigcirc \bullet \bullet$	－		$\bigcirc 00 \cdot$	－•••	－	－＊••	${ }^{\circ} \mathrm{o}$－
Hexyl Acetate	－	－	－0．•	\bigcirc－	－0．	－0．${ }^{-}$	－0．•	．	．	\cdots	－•••	．	．		－	．	－
Hexyl Alcohol	－••	－0．•	－•••	$\bullet \bullet \bullet$	－．．．	$\bullet \bullet . \bullet$	$\bullet \bullet \bullet$	－＊•	－＊．＊	－•••	－•••	－••	－0．	－•••	－•••	－0．•	－•••
Hexyl Hydride	－•••	－	－．．．	－	－	－	－	－	－	－	－	－••	－＊••	－	－	$\bigcirc 00 \cdot$	－0．0
Hexyl Methyl Ketone	$\bigcirc 0 \cdot \bullet$	．	$\bigcirc 0$.	－	－	－	－	－	－	－	－	－	－	－	－	$\stackrel{\bullet \bullet}{ }$	${ }^{\circ} \mathrm{O}$ •
Hexylene Glycol	$\bullet \bullet \bullet$	－०．॰	－•••	－．．．	－•••	－•••	$\bullet \bullet \bullet$	－	－	$\bullet \cdots$	$\bullet \bullet \bullet$	$\bullet \bullet$.	－	－	－	－＊．•	$\bullet \bullet \bullet$
Hexylresorcinol	．	－	－＊．＊	－．．．	－．．．	－＊．＊	－•••	－	－	－0．•	－•••	－	－	－	－	－	－
High Viscosity Lubricant H2	$\bullet \bullet$.	－•••	－．．．	－．．•	－．．．	－•••	－•••	－•••	－．．．	－•••	－•••	－．．•	－0．	－	－•••	－•••	－
High Viscosity Lubricant U4	－•••	－＊＊	－．．．	－．．．	－．．．	$\bullet \bullet$.	－•••	－•••	－＊••	－•••	－•••	$\bigcirc \bullet \bullet$		－	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－
Home Heating Oil	－•••	－0．	－．．．	－	－			$\bigcirc \bullet \bullet$	－			－0••	$\bullet \bullet \bullet$	$\bigcirc \bigcirc \bigcirc$		－	－
Honey	$\bullet \bullet \bullet$	－•••	－．．．	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	－0••	－	－	－	－
Houghto－Safe 1010	$\bigcirc 0 \cdot \bullet$	－．．．	－．．．	－．．．	－．．．	－•••	－•••	－0．•	－．．	$\bigcirc \bigcirc$	－	$\bigcirc \bigcirc \bigcirc$	$\bigcirc 00 \cdot$		－	－．．•	－ $0 \cdot$
Houghto－Safe 1055	$\bigcirc \bigcirc \bullet$	－＊••	－•••	－．．．	－•••	－•••	－•••	－0••	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$	－	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$	${ }^{\circ} \circ$ •	－	$\bullet \bullet \bullet \bullet$	${ }^{\circ} \stackrel{\bullet}{ }$
Houghto－Safe 1120	$\bigcirc \bigcirc \bigcirc$	－．．．	－	－．．．	－．．．	$\bullet \bullet$.	$\bullet \bullet \bullet$	－0••	－＊•	－0．•	－		${ }^{\circ} 0 \cdot$		－	－•••	${ }^{\circ}$－\bullet
Houghto－Safe 271 （Water／Glycol Base） 2	－	－	－	－	－	－	－＊•	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet \bullet$	－00•	－	－＊••	$\bullet \bullet \bullet$		－＊••	－•••
Houghto－Safe 416 and 500 Series	$\bullet \bullet \bullet$	－•••	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	－	－	－	－	－	－	－
Houghto－Safe 5040 （Water／0il Emulsion） 4	－	－	－	－	－	－	$\bullet \bullet \bullet$	－00•	$\bullet \bullet \bullet \bullet$	${ }^{\circ} \bullet$	－${ }^{\bullet}$	${ }^{\circ} \stackrel{0}{ }$	$\bigcirc 0 \bullet \bullet$	${ }^{\circ} 00 \cdot$		${ }^{\bullet \bullet \bullet}$	－${ }^{\circ}$
Houghto－Safe 620 （Water／Glcol）	－•••	－．．•	－．．．	－．．．	－．．•	－•••	－．．．	－＊••	－蛨	－•••	－	－＊•	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet$	－	${ }^{\bullet \bullet}$	－•••
Houghton Vital 29 FM	－	－	－•••	－${ }^{\circ}$	－${ }^{\circ}$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－	－	－	－	－	－	－
Hydraulic Oils（Petroleum Base）	$\bullet \bullet \bullet$	${ }^{\circ} \bullet$	$\bullet \bullet \bullet$	－$\bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc 0 \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} \bullet$	${ }^{\circ}$－				

								$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { ज̄ } \\ & \text { 号 } \\ & \vec{\rightharpoonup} \end{aligned}$			$\begin{aligned} & \text { 岂 } \\ & \text { 品 } \\ & \text { 응 } \\ & \text { 롤 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Hydraulic Oils（Synthetic Base）	－	－	－0••	－•••	－•••	－0••	－•••	－	－	－•••	－•••	－	－	－	－	－	－
Hydrazine	－＊＊	－＊••	${ }^{\circ}$－	－00•	－00•	－00•	$\bigcirc 00 \cdot$	－0••	$\bigcirc 0 \cdot$	－＊．•	－＊．•	－＊•	－0．－	－＊••	－＊•	－•••	$\bigcirc \bigcirc$
Hydrazine Dihydrochloride	－	－	－	$\bigcirc 0 \cdot$	$\bigcirc \bigcirc \bullet$	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$－	－	－	－•••	－$\cdot \bullet$	－	－	－	－	－	－
Hydrazine Hydrate	－	－	－	${ }^{\circ} \stackrel{0}{ }$	${ }^{\circ} \stackrel{0}{ }$	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$	－	－	－0．•	－•••	－	－	－	－	－	－
Hydrazine，Anhydrous	－00•	－．．•	－＊．＊	－	－	－	－	－	$\bigcirc 0 \cdot$	$\bigcirc 00$－	－．．．	$\bullet \bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet$	－＊•	$\bigcirc \bullet \bullet$	－00•
Hydriodic Acid	－	－$\bullet \bullet$	－＊．•	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	${ }^{\bullet \bullet \bullet}$	－．．．	$\bullet \bullet \bullet$	－	－	－	－	－
Hydro－Drive MIH－10，Petro．Base	－•••	－00•	－＊＊	－	－	－	－	${ }^{\bullet \bullet} \cdot$	－•••	－＊＊	－•••	－00•	$\stackrel{\bullet \bullet}{ }$	－＊••	－	$\bigcirc 0 \cdot$	－00•
Hydro－Drive MIH－50，Petro．Base	－＊＊	－0．	－．．．	－	－	－	－	－＊••	－．．．	－．．．	－．．．	$\bigcirc 0 \cdot \bullet$	$\bigcirc \bullet \bullet$	－＊••	－	－	－००॰
Hydrobromic Acid	$\bigcirc 00$	－．．．	－．．．	－•••	－．．•	$\bullet \bullet \bullet$	－•••	－0．	－0．•	$\bigcirc 0$.	－•••	－0••	－0．	$\bigcirc 00$－	－•••	$\bullet \bullet \bullet$	－•••
Hydrobromic Acid 40\％	－0．	－．．．	－．．．	－	－	－	．	－0．•	－0．•	$\bigcirc 0 \cdot$－	－•••	－．．•	－0．\bullet	－००	－＊．．	$\bullet \bullet \bullet$	－
Hydrocarbons，Saturated	－•••	${ }^{\circ} 0 \cdot$	－	－	－	－	－	${ }^{\circ} 0 \cdot$	－•••	－•••	－	－	$\bigcirc \bullet \bullet$	$\bigcirc 00 \cdot$	－	$\bigcirc 00 \cdot$	－00•
Hydrochloric Acid（cold）37\％	－0．•	$\bullet \bullet \bullet$	－	－	－	－	－	－0••	$\bullet \bullet \bullet$	．	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－00•	－＊••	$\bullet \bullet \bullet \bullet$	－•••	${ }^{\circ} \cdot \bullet$
Hydrochloric Acid 37\％－hot	$\bigcirc 0 \cdot$	－0．0	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－0••	－＊•	$\bigcirc 0$－	－．．．	－0．	－0．	－0．	$\bullet \bullet \bullet \bullet$	$\bigcirc 0 \cdot \bullet$	－00•
Hydrochloric Acid， 3 Molar to 158 F	－	－＊••	．	－	－	－	．	$\bigcirc 0 \cdot \bullet$	$\bigcirc \bigcirc \bullet$	－＊•	－	－००•	${ }^{\circ} \bullet \bullet$	－0••	－	$\bullet \bullet \bullet$	－०••
Hydrochloric Acid，Cone．Room Temp． 5	$\bullet \bullet \bullet \bullet$	－${ }^{\bullet \bullet}$	－•••	－${ }^{\circ}$	－＊＊•	$\bullet \bullet \bullet$	－0．0	－	－＊••	－	－	－	$\bigcirc 0 \cdot$－	－		－	－＊••
Hydrocyanic Acid	－＊••	－＊••	－•••	－＊••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－0••	－＊•	－＊•	－•••	$\bullet \bullet \bullet$	－	－＊••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊••
Hydrofluoric Acid（Anhydrous）	－00•	－0．•	－•••	－•••	－•••	$\bullet \bullet \bullet$	－•••	$\bigcirc 0 \cdot$－	－0．\bullet	－	－•••	－	－	－	－	－	－
Hydrofluoric Acid 49\％	$\bigcirc 0 \cdot$	－0．•	－0．	－0．${ }^{\circ}$	－0．${ }^{\circ}$	－00•	－0．	$\bigcirc 0 \cdot$	－0．	－	－＊••	－0••	－0．•	－＊••	－＊＊＊	$\bigcirc \bullet \bullet$	－0••
Hydrofluosilicic Acid	－＊＊＊	－•••	－${ }^{\bullet \bullet}$	－＊＊	－＊＊•	$\bullet \bullet \bullet$	－＊＊＊	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot$	－•••	－＊＊•	$\bullet \bullet \bullet$	－	${ }^{\bullet \bullet} \cdot$	－＊••	$\bullet \bullet \bullet \bullet$	－＊••
Hydrogen	－．．•	－．．．	－．．．	－．．．	－．．．	－•••	－．．•	－0．•	－0．•	－	－．．•	－•••	$\bigcirc \cdot \bullet$	－0．•	－．．．	－•••	－－．．
Hydrogen Bromide（Anhydrous）	－	－＊＊	－	－	－	－	－	－0．		－	－＊＊	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$－	－0••	－	－＊＊	－＊••
Hydrogen Chloride，Gas	－	－＊＊	－	－	－	－	－		－	－	－	$\bullet \bullet \bullet$	－	${ }^{\circ} 0 \bullet$	$\bullet \bullet \bullet$	－＊••	\cdot
Hydrogen Cyanide	${ }^{\bullet \bullet \bullet}$	－${ }^{\circ}$	－＊•	$\bullet \bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc 0 \bullet \bullet$	$\stackrel{\bullet \bullet}{ }$	$\stackrel{\bullet \bullet}{ }$	－	$\bullet \bullet \bullet$	\cdot	${ }^{\circ} \bullet \bullet$	－	$\bullet \bullet \bullet$	${ }^{\circ} \cdot \bullet$
Hydrogen Fluoride	－0．	－＊．	$\bigcirc 00$	－0．	$\bigcirc 00 \cdot$	－00•	$\bigcirc 0$.	$\bigcirc 0 \cdot$－	－0．	${ }^{\circ} 0$.	－＊••	－0．0	${ }^{\circ} 0 \cdot 0$	$\bigcirc 0$.	－	$\bigcirc 0 \cdot$	－00•
Hydrogen Gas，Cold	－	－	－	－	－	－	－	－	－	－＊＊＊	－	－	－	－	－	－	－
Hydrogen Gas，Hot	－	－	－	－	－	－	－	－	－	－${ }^{\circ}$	－	－	－	－	－	－	－
Hydrogen Peroxide	${ }^{\circ} 0 \cdot$	${ }^{\circ} \bullet \bullet$	－	－	－	－	－	－0••	$\bigcirc \bullet \bullet$	－＊••	－•••	${ }^{\circ} \stackrel{\bullet}{ }$	－	${ }^{\circ} 0 \cdot$	－	－	－00•
Hydrogen Peroxide 36\％	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－＊••	$\stackrel{\bullet \bullet}{ }$	${ }^{\circ} \bullet$ •	$\bullet \bullet \bullet$	$\bigcirc 00 \bullet$	${ }^{\circ} 0 \bullet$	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－०••

												$\begin{aligned} & \text { 岂 } \\ & \text { 营 } \\ & \text { 응 } \\ & \text { 롭 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Hydrogen Sulfide，Dry Cold	$\bullet \bullet \bullet$	－•••	－0．	－	－	－	－	$\bigcirc \bullet \bullet$	$\bigcirc \bigcirc \bullet$	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊＊	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Hydrogen Sulfide，Dry Hot	$\bigcirc \bullet \bullet$	－＊••		－	－	－	－	－०•	－०••	$\bigcirc 0 \cdot$	－•••	－＊••	－	$\bigcirc 0 \cdot$	－＊．•	－＊••	－00•
Hydrogen Sulfide，Wet Cold	$\bullet \bullet \bullet$	－＊••	$\bigcirc 0 \cdot$－	－	－	－	－	$\bigcirc 0 \bullet$	－0••	－00•	－•••	$\bullet \bullet \bullet$	－	$\bigcirc 00 \cdot$	－•••	$\bullet \bullet \bullet$	－00•
Hydrogen Sulfide，Wet Hot	－00•	－＊．	－0．	－	－	－	－	－0．•	－0．0	$\bigcirc 00$－	－．．．	－00•	－	$000 \cdot$	－．．．	－＊．＊	－00•
Hydrolube	－•••	－•••	－•••	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊•	－＊••	－．．．	－．．．	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$	－＊．•	－．．．	－＊．＊	－
Hydrolube，Water／Ethylene Glycol	－•••	－．．．	－	－	－	－	－	－	－＊••	－．．．	－	$\bigcirc \bullet \bullet$	$\bigcirc 00 \cdot$	－＊＊	－	－•••	－
Hydrooxycitronellel	－	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－	－	－
Hydroquinol	－	－	－	－	－	．	－	－	－	$\bigcirc 0 \cdot$－	－	－0．\bullet	－	－	－	$\bigcirc 0 \cdot$	－．．．
Hydroquinone	－0．•	－0．	－＊•	－＊•	－．．．	$\bullet \bullet \bullet$	－•••	－＊•	－＊•	$\bigcirc 0 \cdot$	－．．．	$\bigcirc \bigcirc \bigcirc$	－	$\bigcirc 0 \cdot$－	－0．•	$\bigcirc 0 \bullet$	－＊．＊
Hydroxyacetic Acid	－	－•••	－0．•	－0．•	－0．•	－0．\bullet	－०．•	－	－0．•	－0．•	－．．．	$\bigcirc \bullet \bullet$	－	－	－＊•	－	－0．•
Hydyne（UHDT）	$\bullet \bullet \bullet$	－．．．	$\bigcirc 00$－	$\bigcirc 0 \cdot$－	$\bigcirc 0$.	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$－	－0．	－0．\bullet	－＊••	－＊••	－＊•	－	－＊••	－	$\bigcirc \bullet \bullet$	－＊••
Hyjet	－0．\bullet	－．．•	$\bigcirc 00$	－	－	－	－	－0．	－0．•	$\bigcirc 00$－	－．．•	－0．\bullet	－00•	－0．	－＊•	－•••	－00•
Hyjet IV，IVA	－0．	－•••	$\bigcirc 0 \cdot$－	－	－	－	－	$\bigcirc 0 \cdot$－	－0．	$\bigcirc 00$－	－00．	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$－	$\bigcirc 00 \cdot$		－＊＊	－00•
Hyjet S4	$\bigcirc 00 \bullet$	－．．．	$\bigcirc 0 \cdot \bullet$	－	－	－	－	－	－	－	－．．．	－	－	$\bigcirc 0 \cdot$	－＊．＊	－	－
Hyjet W	－0．	－．．•	$\bigcirc 00 \cdot$	$\bigcirc 00$－	－0．	－00•	－00•	－0．	－0．\bullet	－00•	－．．．	－0．\bullet	－00•	$\bigcirc 00 \cdot$	－＊．	$\bigcirc \bullet \bullet$	－00•
Hypochlorous Acid	－00•	－＊•	－．．•	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	－＊••	－0．${ }^{-1}$	－．．．	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot$－	－0．		－•••	－嘍•
Indole	－	－		－	－	－	－	－	－	－	－•••	－	－	－	－	－	－
Industron FF44，48，53， 80	－•••	$\bigcirc 0 \cdot \bullet$	－．．•	－．．•	－•••	－•••	－•••	$\bigcirc 0 \cdot \bullet$	－．．•	－．．．	－．．．	－．．＊	$\bullet \bullet \bullet$	－0．	－．．•	$\bigcirc 0 \cdot$－	－00•
Insulin	－$\bullet \bullet$	－•••	－0．•	－	－	－	－	－＊••	－．．•	－0．•	－•••	－•••	－0．－	－•••	－	－•••	－•••
lodic Acid	－	－	－	－	－	－	－	－	－	－0．•	－．．．	－	－	－	－	－	－
lodine	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－•••	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－•••		－0．	－＊＊	－•••	$\bigcirc \bullet \bullet$	－00•
1 Iodine Pentafluoride	$\bigcirc \bigcirc \bullet$	－0．－	－0．	$\bigcirc 0 \cdot$	－0．${ }^{\circ}$	－0．	－0．	$\bigcirc 0 \cdot$	－0．	－0．	－．．．		－0．\bullet	－00•	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$－	－00•
Iodoform	－	－	${ }^{\circ} \bullet \bullet$	$\bigcirc{ }^{\circ} \bullet$	－＊••	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－•••	${ }^{\circ} 0 \cdot$	－	－	－		${ }^{000}$ •
Iron Acetate		－		－	－	－	－	－0．－	－	－	－	－	－	－	－	$\bigcirc 0 \cdot$	－00•
Iron Chloride	$\bullet \bullet \bullet$	－•••	－${ }^{\bullet \bullet}$	－	－	－	－	$\bullet \bullet \bullet \bullet$	－＊＊•	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－＊＊	－	$\bullet \bullet \bullet \bullet$	－$\bullet \bullet$
Iron Nitrate	$\bullet \bullet \bullet$	－${ }^{\circ}$	－•••	－	－	－	－	${ }^{\circ} \bullet \bullet$	－${ }^{\circ}$	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－	$\bullet \bullet \bullet \bullet$	－$\bullet \bullet$
Iron Sulfate	－•••	－$\cdot \bullet$	－•••	－	－	－	－	－＊••	－•••	－	－	－•••	－＊•	－•••	－	－•••	－．．．
Iron Sulfide	－•••	－	－•••	－	－	－	－	－	－	－	－	－	－	－	－	－•••	－•••

								$\begin{aligned} & \text { 岂 } \\ & \text { OU } \\ & \text { जn } \end{aligned}$									
CHEMICAL NAME	NBR	EPDM	FKM - A	FKM - B	FKM - F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE/P	IIR	NR
Isoamyl Acetate	$\bigcirc 0 \cdot$ •	-*••	$\bigcirc \bigcirc$		$\bigcirc \bigcirc \bullet$	-00•	$\bigcirc 0 \bullet$	$\bigcirc \bigcirc$	-	-0••	-•••		$\bigcirc 0 \cdot$ -	-	-	-*••	$\bigcirc 0 \cdot$
Isoamyl Butyrate	$\bigcirc 0 \cdot \bullet$	-	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	-०••	-00•		-	-	-०••	-•••	-	-	-	-	-0••	
\|soamyl Chloride	-00•	$\bigcirc 0 \cdot$ -	-•••	-	-	-	-	-	-	-	-	-00•	-	-	-	-0.•	-00•
Isoamyl Ether	-0••	$\bigcirc 0 \cdot$	-	-	-	-	-	-	-	-	-	-00•	-	-	-	$\bigcirc 0 \cdot$	-00•
Isoamyl Valerate	-	-	-	$\bullet \bullet \bullet \bullet$	- $\cdot \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	-	-	-0.•	-•••	-	-	-	-	-	-
Isobutane	$\bullet \bullet \cdot$	$\bigcirc 00$ -	-*.•	-...	-...	-•••	$\bullet \bullet \cdot \bullet$	$\bigcirc \bigcirc \bigcirc$	-*.	-*.•	-*••	$\bigcirc 0 \bullet$		$\bigcirc \bigcirc$	-	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$ -
\|sobutyl Acetate	$\bigcirc 0 \cdot \bullet$	-0.•	$\bigcirc 00 \cdot$	$\bigcirc 00 \cdot$	$\bigcirc 00 \cdot$	-00•	-0.	-	-	-0.•	-**.	-00•	-	-	-	-*••	-0.•
Isobutyl Alcohol	$\bullet \bullet \bullet$	- $\cdot \bullet$	- $\cdot \bullet$	$\bullet \bullet \bullet$	-*.•	-*..	-*••	$\bullet \bullet \bullet$	-0.	-•••	$\bullet \bullet \bullet \bullet$	-*..	$\bullet \bullet \bullet$				
\|sobutyl Aldehyde	-0. ${ }^{\circ}$	-*.•	-0.	$\bigcirc 0 \cdot$	-0. ${ }^{\circ}$	-0.0	$\bigcirc 00 \cdot$	००••	-	-	.	००••	-0.•	-	-0.	-*.	-○••
Isobutyl Chloride	$\bigcirc 0 \cdot$ -	-0.	-...	-*.•	-•••	-*•	-•••	-	-	$\bigcirc 0 \cdot$	-•••	-	-	-		$\bigcirc 0 \cdot$	${ }^{\circ}$ -
Isobutyl Ether	-*••	$\bigcirc 0 \cdot$	-00•	$\bigcirc 0 \bullet$	$\bigcirc 0 \cdot$	-0, •	-00•	-	-	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	-	-	-		-0.	-0.•
Isobutyl Methyl Ketone	-0. \bullet	-•••	-0. \bullet	-0. \bullet	-0. ${ }^{\circ}$	-0.•	-0. ${ }^{\text {- }}$	-००-	-0.	-0.•	.	-००॰	-0.	-*••	-	$\bullet \bullet \bullet$	-
Isobutyraldehyde	$\bigcirc 0 \cdot$ -	-...		-	-	-	-	-0. \bullet	$\bigcirc 0 \cdot$ -	-*.•	-*..	-00•	-0.	-*••	-0.	-	-
Isobutyric Acid	$\bigcirc 00 \cdot$	-*..	-0.•	-0.•	-*.	-0••	-...	-	-	-*..	-•••	-*•	-	-	-0••	-•••	$\bullet \bullet \bullet \bullet$
Isocrotyl Chloride	-	-	-	-	-	-	-	-	-*••	-	-•••	-00•	-0••	$\bigcirc 00 \cdot$	-	$\bigcirc 00$	${ }^{\circ}$ -
Isodecanol	-	-	-*••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	-	-	-*••	$\bullet \bullet \bullet$	-	-	-	-	-	-
Isododecane	-•••		-...	-	-	-	-	-0. \bullet	-..•	-...	-...	-*••	-*••	-0.0	-•••	-0.	${ }^{\circ}$ •
\|soeugenol	-	-	-...	-...	-...	-..•	-•••	-	-	-...	-...		-	-	-	-	-
Isooctane	$\bullet \bullet \cdot \bullet$	${ }^{\circ} \bullet$	- $\cdot \bullet$	-•••	-*••	$\bullet \bullet \bullet$	-•••		-*••	-•••	-...	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$		-०••	${ }^{\circ} \bullet$	${ }^{\circ}$ -
Isopentane	-•••	${ }^{\circ} 0 \cdot$	-•••	-•••	-...	$\bullet \bullet \bullet$	-•••	$\bigcirc \bigcirc \bullet$	-...	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bigcirc \bigcirc$	$\bullet \bullet \bullet$	$\bigcirc \bigcirc \bullet$	-	$\bigcirc 0 \cdot$	${ }^{\circ}$ -
Isophorone	-0.	-•••	-0.	$\bigcirc 0 \cdot$	-0.	-00•	${ }^{\circ} 0 \cdot 0$	$\bigcirc 0 \cdot$ -	${ }^{\circ} 0 \cdot$	$\bigcirc 0$.	-...	-0.•	${ }^{\circ} 0 \cdot$	-0. \bullet	-*•	-•••	${ }^{\circ}$ -
\|sopropanol	$\bullet \bullet \bullet$	-...	-	-	-	-	-	$\bullet \bullet \bullet$	${ }^{\bullet \bullet \bullet}$	$\stackrel{\bullet \bullet}{ }$	-	-0••	${ }^{\circ} \stackrel{0}{ }$	$\bullet \bullet \bullet$	-	-***	$\bullet \bullet \bullet$
Isopropyl Acetate	${ }^{\circ} \stackrel{0}{ }$	-*••	${ }^{\circ} 0 \cdot$	${ }^{\circ} \stackrel{0}{ }$	${ }^{\circ} \bullet$	${ }^{\circ} 0 \bullet$	${ }^{\circ} 0 \cdot$	${ }^{\circ} \bullet \bullet$	${ }^{\circ} \bullet$	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet$	$\bigcirc 00 \bullet$	${ }^{\circ} 0 \cdot$	${ }^{\circ} \bullet \bullet$	-00•	$\bigcirc \bullet \bullet$	${ }^{\circ}$ -
Isopropyl Acetone	-	-	-	-	-	-	-	-	-	$\bigcirc 0 \cdot \bullet$	-	-	-	-	-	-	-
Isopropyl Alcohol	$\bullet \bullet \bullet$	-•••	$\bullet \bullet \bullet \bullet$	-•••	-•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\stackrel{\bullet \bullet}{ }$	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet \bullet$	- * ••	${ }^{\circ}$ -	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	-•••	$\bullet \bullet \bullet$
Isopropyl Amine	-00•	-	$\bigcirc 0 \cdot$ •	$\bigcirc 0 \cdot$ -	$\bigcirc 0 \cdot$ -	-00•	-00•	-	-	-0••	$\bullet \bullet \bullet \bullet$	-	-	-	-	-*••	-*••
Isopropyl Chloride	-00•	${ }^{\circ} \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	-*••	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet \bullet$	${ }^{\circ} 0 \bullet$	${ }^{\circ} 00$	${ }^{\circ} 0 \cdot$	-00•	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \bullet$
Isopropyl Ether	-•••	-00•	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$	-00•	${ }^{\circ} 0 \cdot 0$	-00•	-0••	-•••	-•••	-00•	-•••		-00•	${ }^{\circ} 0 \cdot$	${ }^{\circ}$ -

								$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { O} \\ & \text { 訁 } \\ & \text { O} \\ & 0 \\ & \vec{Z} \end{aligned}$			$\begin{aligned} & \text { 岂 } \\ & \text { 落 } \\ & \text { 응 } \\ & \text { 롱 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Jet Fuel A	－•••	$\bigcirc \bigcirc$	－$\bullet \bullet$	－$\bullet \bullet$	－•••	－•••	－＊．•	－	－＊••	－•••	－	$\bigcirc 0 \cdot$	－0••	$\bigcirc 0 \bullet$	－	$\bigcirc 0 \bullet$	－0．•
JP－3（MIL－J－5624）	－•••	${ }^{\circ}$－	－＊．•	－＊．•	－＊．•	－•••	－＊．•	${ }^{\circ} 0 \cdot$	－•••	－•••	－＊＊	－00•	－0••	－00•	－•••	${ }^{\circ} 0 \cdot$	${ }^{\circ}$－\bullet
JP－4（MIL－J－5624）	－＊••	－0．	－$\cdot \bullet$	－＊••	－＊••	－•••	$\bullet \bullet \bullet \bullet$	$\bigcirc 00 \bullet$	$\bigcirc \bullet \bullet$	－•••	－$\cdot \bullet$	$\bigcirc 00 \cdot$	$\bigcirc 0 \bullet$	－00•	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot \bullet$	－00•
JP－5（MIL－J－5624）	－＊．＊	$\bigcirc 0 \cdot$－	－．．．	－．．．	－．．．	－＊．＊	－．．．	－0．	－．．．	－＊．．	－．．．	－0．	－•••	－00•	－听	－0．	－0．＾
JP－6（MIL－J－25656）	－．．．	－0．	－．．．	－．．．	－．．．	－•••	－．．•	－0．	－＊．＊	－•••	－．．•	$\bigcirc 00 \cdot$	－0．0	－00•	－＊．•	－0．	－0．＾
JP－8（MIL－T－83133）	$\bullet \bullet \bullet$	$\bigcirc 0$.	－．．．	－．．．	－．．．	－＊．•	－．．．	$\bigcirc 0 \cdot \bullet$	－•••	－＊••	－．．．	－•••	$\cdots \cdots$	$\bigcirc 0 \cdot$	－＊．．	$\bigcirc 0 \bullet$	－०••
JP－9（MIL－F－81912）	$\bigcirc 0 \cdot 0$	$\bigcirc 00$－	－．．•	－．．．	－．．．	－•••	－．．•	－0．	－＊．•	－0．•	－•••	－00	－0．•	－00•	－	－0．	$\bigcirc 0 \cdot$－
KEL－F Liquids	－．．•	－．．．	－0．0	－＊．	－．．．	－0．0	－．．．	－•••	－．．．	－．．．	－0．•	－0．•	－	－•••	－0．•	$\bullet \bullet \bullet$	－
Kerosene	－＊．＊	$\bigcirc 0 \cdot$	－•••	－＊．•	－＊．•	－＊＊	－＊．•	$\bigcirc 0 \cdot \bullet$	－＊．•	－•••	－•••	$\bigcirc 0 \cdot$	－＊•	$\bigcirc 0 \cdot \bullet$	－＊．•	$\bigcirc 0 \cdot$	$\bigcirc \bigcirc$
Keystone \＃87HX Grease	－•••	$\bigcirc 0$－	－	－	－	－	－	$\bigcirc 0 \cdot$	－．．．	－．．．	－	$\bigcirc 0 \cdot$	－•••	$\bigcirc 0 \cdot$		$\bigcirc 0 \cdot$	${ }^{\circ}$－
Lacquer Solvents	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$－	$\bigcirc 00$－	－0．\bullet	$\bigcirc 0$.	－0．	$\bigcirc 0 \cdot$－	$\bigcirc 0$.	$\bigcirc 00 \cdot$	－0．	－．．•	$\bigcirc 0 \cdot$－	－0．	－0．	$\bigcirc 0$.	$\bigcirc 00 \cdot$	${ }^{\circ} 0 \bullet$
Lacquers	－0．		$\bigcirc 00$－	$\bigcirc 00$－	－0．•	－00•	－0．	－0．\bullet	－0．	－००	－．．．	$\bigcirc 0 \cdot$－	－0．\bullet	$\bigcirc 0 \cdot$	－0．	－0．\bullet	－00•
Lactams（Amino Acids）	$\bigcirc 00 \cdot$	－．．．	－•••	－．．．	－．．．	－＊••	－•••	－	$\bigcirc 0 \cdot$－	－0．0	－．．．	－＊．＊	－	$\bigcirc 00 \cdot$	－०．॰	$\bigcirc \bullet \bullet$	${ }^{\circ} 0 \cdot$
Lactic Acid，cold	$\bullet \bullet \bullet$	－．．॰	－．．．	－．．．	－．．．	－．．．	－．．•	$\bullet \bullet \bullet$	－．．॰	－•••	－．．．	－•••	－00•	$\bullet \bullet \bullet$	－．．．	－•••	－•••
Lactic Acid，Hot	－00•	$\bigcirc 00 \cdot$	－•••	－＊．	－＊．	－•••	－•••	－＊••	－＊••	－0．	－•••	－00•	－00•	－00•	－．．．	－0．\bullet	－00•
Lactones（Cyclic Esters）	－00•	－．．	－00•	－	－	－	－	－•••	$\bigcirc 0 \cdot$－	－0．0	$\bigcirc 00 \cdot$	$000 \cdot$	$\bigcirc 0 \cdot \bullet$	－0．	－	$\bullet \bullet \bullet$	－0．•
Lard（Animal Fat）	－•••	－＊．＊	－．．．	－．．•	－．．．	－•••	－•••	－＊••	－．．．	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－＊．•	－•••	$\bigcirc 00 \cdot$	－•••	－••	${ }^{\circ}$－
Laurie Acid	$\bigcirc 0 \cdot$	－0．•	－．．．	－．．．	－．．．	－．．．	－．．．	－	－	－•••	－．．．	－．．•	－	－	－	－	－0．•
Lavender oil	－＊＊	$\bigcirc 0 \cdot$－	－•••	－．．•	－＊．•	－•••	－•••	$\bigcirc 0 \cdot$	$\bigcirc \bullet \bullet$	－＊••	－•••	－0．	－0．	－00•	－•••	－0．	－0．•
Lead Acetate	－＊．•	－．．．	－0．${ }^{\circ}$	$\bigcirc 0$.	$\bigcirc 0$.	－0．	$\bigcirc 0$.	$\bigcirc 0 \cdot$－	－0．	－＊．．	－．．．	－＊．•	${ }^{\circ} 0 \cdot 0$	$\bigcirc 0 \cdot$	$\bigcirc 0$.	$\bullet \bullet \bullet$	－•••
Lead Arsenate	－＊．•	－	－	－	－	－	－	－	－	－0．•	－．．．	－＊．•	$\bigcirc \bullet \bullet$	－	－	－	－
Lead Bromide	－	－	－	－	－	－	－	－	－	－०．•	－．．．	－	－	－	－	－	－
Lead Carbonate	－	－	\cdot	－	－	－	－	－	－	${ }^{\circ} \bullet \bullet$	－•••	－	－	－	－	－	－
Lead Chloride	$\bullet \bullet \bullet$	－．．•	－•••	－．．•	－•••	$\bullet \bullet$.	$\bullet \bullet \bullet$	－	－	－0．•	－．．．	$\bigcirc \bullet \bullet$	－	－	－	－	－＊••
Lead Chromate	－	－	－	－	－	－	－	－	－	－०••	－＊＊＊	－	－	－	－	－	－
Lead Dioxide	－	－	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊＊	$\bullet \bullet \bullet$	－	－	${ }^{\circ} \bullet \bullet$	－$\cdot \bullet$	－	－	－	－	－	－
Lead Linoleate	－	－	－	－	－	－	－	－	－	－0••	－•••	－	－	－	－	－	－
Lead Nitrate	$\bullet \bullet \bullet \bullet$	－•••	－•••	－•••	－•••	－•••	$\bullet \bullet \bullet \bullet$	－•••	－•••	－•••	－＊••	－＊••	－	－•••		－•••	－＊••

												$\begin{aligned} & \text { 岂 } \\ & \text { 品 } \\ & \text { 응 } \\ & \text { 롱 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Lead Oxide Red	－•••	－•••	－•••	－•••	－•••	－＊•	－•••	－	－	－0••	－•••	－•••	－	－	－•••	－	－
Lead Sulfamate	－＊．＊	$\bullet \bullet \bullet \bullet$	－	－	－	－	－	－＊＊	－＊••	－＊••	－＊．•	$\bullet \bullet \bullet$	－	－＊••	－	$\bullet \bullet \bullet$	－•••
Lehigh X1169	－＊＊＊	－0．	－	－	－	－	－	－0．	－•••	－＊••	－	$\bullet \bullet \bullet$	－•••	－00•	－	－0．	－00•
Lehigh x 1170	－＊．•	－00．	－	－	－	－	－	－0．	－．．．	－．．．	－	－．．．	－•••	－0．	－	－0．	－00•
Light Grease	$\bullet \bullet \bullet \bullet$	－0．	－	－	－	－	－	－0．	－．．．	－．．．	－	$\bigcirc 0 \cdot \bullet$	－•••	$\bigcirc 0 \cdot$	－•••	－0．	－00•
Ligroin	$\bullet \bullet \bullet$	－००	－$\cdot \bullet$	$\bullet \bullet \bullet$	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－००	－$\cdot \bullet$	－$\cdot \bullet$	－＊．•	$\bigcirc \bigcirc \bigcirc$	－0••	－0．	－．．•	$\bigcirc 0 \cdot$	－00•
Lime Bleach	－•••	－•••	－．．．	－	－．．．	－	－•••	－＊••	－．．．	－．．．	－．．•	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－．．．	－•••	－•••
Lime－Sulfur Solution	$\bigcirc 0 \cdot$－	－．．．	－．．．	－．．．	－．．．	$\bullet \bullet \bullet$	－•••	－•••	－．．．	－．．．	－．．．	－•••	－	．	－．．．	－•••	－00•
Lindol（Hydraulic Fluid）	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet \bullet$	－＊••	－＊＊	－．．．	－•••	－•••	－०••	－०••	－•••	－．．．	$\bigcirc \bigcirc \bullet$	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$	－．．．	$\bullet \bullet \bullet$	${ }^{\circ} 0 \bullet$
Linoleic Acid	$\bigcirc \bullet \bullet$	－००	$\bigcirc \cdot \bullet$	－＊•	－＊．•	－०••	$\bullet \bullet \bullet$	－＊••	－		－$\cdot \bullet$	$\bigcirc \bigcirc \bigcirc$	$\bullet \bullet \cdot$	$\bigcirc 0$－	－．．．	$\bigcirc \bigcirc \bullet$	－0०•
Linseed oil	－•••	－0••	－•••	－．．．	－．．．	$\bullet \bullet \bullet$	－•••	－•••	－•••	－．．．	－．．．	$\bullet \bullet \bullet$	－•••	－0．	－•••	$\bigcirc \bullet \bullet$	－00•
Liquid 0xygen	－0．	－००	－0．\bullet	$\bigcirc 00$－	$\bigcirc 0 \cdot$－	－00•	－0．	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0$.	－．．．	$\bigcirc 0 \cdot \bullet$	$\bigcirc 00 \cdot$	－0．	－0．\bullet	－0．	－00•
Liquified Petroleum Gas（LPG）	－＊．•	－0．	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	$\bigcirc 0 \cdot$	－०••	－•••	－．．．	－0••	$\bigcirc 0 \bullet$	${ }^{\circ} 0 \cdot$	$\bigcirc \bullet \bullet$	－00•	${ }^{\circ} 0 \cdot 0$
Liquimoly	$\bullet \bullet \bullet$	－००．	－	－	－	．	－	－००	$\bullet \bullet \bullet$	－．．．	－	－．•	$\bigcirc \bullet \bullet$	－0．	－	$\bigcirc \bigcirc \bullet$	－00•
Liquor	－•••	$\bullet \bullet \bullet \bullet$	－•••	－•••	－＊••	$\bullet \bullet \bullet \bullet$	－•••	－	－	－	－＊＊	－	－	－	－$\cdot \bullet$	－	－
Lithium Bromide，Brine	－＊．•	－．．．	－＊．．	$\bullet \bullet \bullet$	－•••	－．．．	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－0．•	－．．．	－0．	－0．	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－00•
Lithium Carbonate	－	－	－	－	－	－	－	－	－	－•••	－．．．	－	－	－	－	－	－
Lithium Chloride	$\bullet \bullet \bullet$	－0••	－．．．	$\bullet \bullet \bullet$	－0．•	$\bullet \bullet \bullet$	－	－	－＊••								
Lithium Citrate	－	－	－	－	－	－	－	－	－	－0••	－•••	－	－	－	－	－	－
Lithium Hydroxide	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－＊••	－•••	－＊•	－$\bullet \bullet$	$\bigcirc \bullet \bullet$	－0．•	－0．•	－0••	－$\cdot \bullet$		－0．•		$\bullet \bullet \bullet$	－	－＊•
Lithium Hypochlorite	－	－	－	－	－	－	－	－	－	－0••	－•••	－	－	－	－	－	－
Lithium Nitrite	－	－	－	－	－	－	－	－	－	－0••	－•••	－	－	－	－	－	－
Lithopone	－	－	－	－	－	－	－	－	－	－0••	－＊••	－	－	－	－	－	－
Lubricating oils，Diester	－＊．＊	－००．	－．．．	－•••	－•••	－．．•	－•••	－0．•	$\bullet \bullet \bullet$	－＊•	－${ }^{\bullet \bullet}$	－0••	－00•	${ }^{\circ} \bullet$	－＊••	$\bigcirc 00 \bullet$	${ }^{\circ} 0 \bullet$
Lubricating Oils，Petroleum	$\bullet \bullet \bullet$	${ }^{\circ} \stackrel{ }{ }$	－•••	－＊＊	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－${ }^{\bullet \bullet}$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet \bullet$	$\bigcirc 00 \cdot$	${ }^{0} 0 \bullet$
Lubricating Oils，SAE 10，20，30，40， 504	－	－	－	－	－	－	－•••	$\bigcirc \bigcirc \bullet$	－0．	－00•	－${ }^{\circ}$	－	－	${ }^{\circ} \bullet$ •			－$\bullet \bullet$
Lye	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－＊•	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊＊	－＊••	－＊••	－•••	$\bullet \bullet \bullet \bullet$	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊••
Machine oil	－＊．•	－0．	－•••	－	－	－	－	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－•••	－	－	－	－

								$\begin{aligned} & \text { 山 } \\ & \text { U } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { O} \\ & \text { 訁 } \\ & \text { O} \\ & 0 \\ & \vec{Z} \end{aligned}$			$\begin{aligned} & \text { 岂 } \\ & \text { 品 } \\ & \text { 응 } \\ & \text { 롱 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Magnesium Acetate	$\bigcirc 0 \cdot$	－•••	$\bigcirc \bigcirc$	－	－	－	－	$\bigcirc 0 \cdot$	$\bigcirc \bigcirc$	－	－	$\bigcirc 0 \cdot$	$\bigcirc 00$	$\bigcirc \bigcirc$	－	－•••	－00•
Magnesium Bisulfite	$\bullet \bullet \bullet$	－	－	－	－	－	－	－	－	－	－	－＊••	－	－	－	$\stackrel{\bullet \bullet}{ }$	$\bullet \bullet \bullet \bullet$
Magnesium Chloride	－•••	－•••	－•••	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－．．•	$\bullet \bullet \bullet$	－＊．＊	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	－•••
Magnesium Hydroxide	－＊••	－．．．	－•••	－．．．	－．．•	－．．•	－．．•	－＊••	－	－．．．	－．．•	－＊．＊	－00•	－＊．＊	－．．•	－•••	－•••
Magnesium Salts	－•••	－＊．•	－＊．•	－＊．•	－•••	－＊＊•	－＊．•	－•••	－•••	－．．•	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－．．．	－•••	－•••
Magnesium Sulfate（Epsom Salts）	－•••	－．．．	－．．．	－．．．	－．．．	－．．•	－．．．	－•••	－．．．	－	－．．．	－．．．	－	－•••	－．．．	－．．．	－．．．
Magnesium Sulfite	－•••	－．．．	－＊．＊	－．．•	－．．．	－•••	－．．•	$\bullet \bullet$.	－．．．	－•••	－•••	－．．．	－	－＊••	－．．．	－•••	－＊••
Malathion	－＊•	$\bigcirc 0$.	－．．．	－．．．	－．．．	－＊．•	－．．．	$\bigcirc 0$.	－．．．	．	－．．．	－	$\bigcirc 00$	－0．	．	$\bigcirc 0$.	－००॰
Maleic Acid	－0．•	$\bigcirc 0 \cdot$－	－•••	－．．．	－•••	$\bullet \bullet \bullet$	－．．•	$\bigcirc 0 \cdot$－	－．．•	$\bigcirc 0 \cdot$－	－．．．	$\bigcirc 0 \cdot$－	－	००••	－•••	－＊••	－००॰
Maleic Anhydride	$\bigcirc \bigcirc \bigcirc$	$\bigcirc 0$.	$\bigcirc 0$.	$\bigcirc 0 \cdot$－	－0．•	$\bigcirc 00 \cdot$	－0．	－	－	$\bigcirc 0 \cdot$－	－．．．	－0．	－	$\bigcirc \bigcirc \bullet$	－．．．	－＊．•	－००॰
Maleic Hydrazide	－	－	－	－	－	．	．	－	－	－0．•	－•••	．	－	－	．	－	－
Malic Acid	$\bullet \bullet \bullet$	$\bigcirc 0$.	－•••	－•••	－•••	$\bullet \bullet$.	－．．•	－＊•	－．．．	$\bullet \bullet \bullet$	－．．．	－＊••	－	－०••	－•••	－0．	$\bullet \bullet \bullet \bullet$
Mandelic Acid	－	．	－0．	$\bigcirc 00 \cdot$	$\bigcirc 00 \cdot$	$\bigcirc 0$.	－00•	－	－	－0．•	－．．．	－	－	－	－	－	－
Manganese Acetate	－	－	$\bigcirc 00$	$\bigcirc 00$－	－0．•	$\bigcirc 0$.	$\bigcirc 00 \cdot$	－	－	－0．•	－．．．	－	－	－	－	－	－
Manganese Carbonate	－	－	－	－	－	－	－	－	－	－•••	$\bullet \bullet \cdot$	－	－	－	－	－	－
Manganese Chloride	$\bullet \bullet \bullet$	－0．•	－＊••	$\bullet \bullet \bullet$	－．．•	$\bigcirc 00 \cdot$	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot \bullet$	－•••	－0．0	－	－＊＊	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－	－＊•	－＊••
Manganese Dioxide	－	．	－	－	－	．	－	－	－	－0．0	－•••	－	－	－	－	－	－
Manganese Gluconate	－	．	－	－	．	－	－	－	－	－0••	－＊＊	－	－	－	－	－	－
Manganese Hypophosphite	－	－	－	－	－	－	－	－	－	－•••	－•••	－	－	－	－	－	－
Manganese Linoleate	－	－	－	－	－	－	－	－	－	$\bigcirc \bigcirc \bullet$	－$\bullet \bullet$	－	－	－	－	－	－
Manganese Phosphate	－	－	－	－	－	－	－	－	－	$\bigcirc \bullet \bullet$	－	－	－	－	－	－	－
Manganese Sulfate	－०॰॰	－．．．	－०．॰	－．．•	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－•••	－0．•	－．．．	$\bullet \bullet \bullet$	－0．	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－•••
Manganous Chloride	－	－	－	－	－	－	－	－	－	－0••	－＊••	－	－	－	－	－	－
Manganous Phosphate	－	－	－	－	－	－	－	－	－	${ }^{\circ} \bullet \bullet$	－$\cdot \bullet$	－	－	－	－	－	－
Manganous Sulfate	－	－	－	－	－	－	－	－	－	－0••	－•••	－	－	－	－	－	－
Mannitol	－	－	－	－	－	－	－	－	－	－0••	－•••	－	－	－	－	－	－
MCS312	－00•	－0．	－	－	－	－	－	$\bullet \bullet \bullet \bullet$	－•••	${ }^{\circ} \bullet$	－	$\bigcirc 0 \cdot \bullet$	－	$\bigcirc 00 \cdot$	－	${ }^{\circ} 0 \cdot$	${ }^{\circ} \bullet \bullet$
MCS 352	－0．•	－•••	－	－	－	－	－	－0••	－0••	－00•	－	${ }^{\circ} \bullet \bullet$	${ }^{\circ} 0 \cdot$	${ }^{\circ} \bullet \bullet$	－	－＊••	${ }^{\circ}$－\bullet

								$\begin{aligned} & \text { 岂 } \\ & \text { O} \\ & \text { ज } \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { ज̄ } \\ & \text { 号 } \\ & \vec{\rightharpoonup} \end{aligned}$			$\begin{aligned} & \text { 岂 } \\ & \text { 落 } \\ & \text { 응 } \\ & \text { 롱 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
MCS 463	－00•	－$\bullet \bullet$	－	－	－	－	－	$\bigcirc 0 \bullet$	－0．•	－00•	－	－00•	－00•	－00•	－	－＊••	－00•
Mercaptan	－0．\bullet	$\bullet \bullet \bullet \bullet$	－0••	－＊••	－＊•	－०••	－＊••	－	－	－•••	－	－0．\bullet	$\bigcirc 00 \bullet$	－00•	－	－	－
Mercaptobenzothiazole（MBT）	$\bigcirc \bigcirc \bullet$	－＊••	－＊••	－	－	－	－	－	－	－	－＊••	－	－	－	－•••	－	－
Mercuric Acetate	－	－	－00•	－0．${ }^{\circ}$	$\bigcirc 00$－	－00•	－00•	－	－	－0．•	－．．．	－	－	－	－	－	－
Mercuric Chloride	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－．．．	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet \bullet$
Mercuric Cyanide	－•••	－．．．	－＊．•	－．．．	－．．．	－＊•	－•••	－	－	－0．0	－．．．	$\bigcirc \bullet \bullet$	－	－	－	－•••	$\bullet \bullet \bullet$
Mercuric lodide	－	－	－	－	－	－	－	－	－	－0••	－•••	－	－	－	－	－	－
Mercuric Nitrate	－	－	－	－	－	－	－	－	－	－0．•	－•••	－	－	－	－	－	－
Mercuric Sulfate	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－．．．	－．．．	$\bigcirc \bullet \bullet$	$\bullet \bullet . \bullet$	$\bigcirc \bullet \bullet$	－	－0．•	－．．．	－．．•	－	－	－	$\bigcirc \bullet \bullet$	－＊•
Mercuric Sulfite	－0．•	－．．．	－0．•	－	－	－	－	－＊．．	－•••	－0．•	－．．．	－•••	－0．•	－•••	－	－•••	－•••
Mercurous Nitrate	$\stackrel{\bullet \bullet}{ }$	－．．．	－＊．•	－•••	－＊＊	－＊•	－．．•	－．．．	－•••	－0．0	－．．．	－•••	－0．•	－•••	－	－•••	$\bullet \bullet \bullet$
Mercury	－•••	－．．．	－．．．	－．．．	－．．．	－•••	－．．•	－．．．	－०••	－．．．	－．．．	－．．．	－•••	－•••	－．．．	－．．．	$\bullet \bullet \bullet \bullet$
Mercury Chloride	－•••	－．．．	－	－	－	．	．	－．．．	．	－．．•	－．．．	－•••		－•••		$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Mercury Fulmimate	－	－	－	－	－	－	－	－	－	－0．0	－．．．	－	－	－	－	－	－
Mercury Salts	－•••	－＊．	－	－	－	．	－	－	－	－0．•	－	$\bullet \bullet \bullet$	－	－	－	$\bullet \bullet \bullet \bullet$	－
Mercury Vapor	－•••	－．．．	－•••	－．．•	－．．•	－•••	$\bullet \bullet \bullet$	－	－	－．．．	－•••	$\bigcirc 00 \bullet$	－	－•••	－•••	－•••	－०••
Mesityl Oxide	－0．	－．．．	$\bigcirc 00 \cdot$	$\bigcirc 00 \cdot$	$\bigcirc 00$	$\bigcirc 00 \cdot$	－00•	$\bigcirc 0 \cdot$	－0．\bullet	$\bigcirc 00$－	－•••	$\bigcirc 00 \cdot$	－0．\bullet	－00•	$\bigcirc 0 \cdot$－	－＊．＊	－00•
Meta－Nitroaniline	$\bigcirc \bullet \bullet$	－．．．	－0．•	－	－	．	－	－＊．	－．．．	－0．0	－．．．	$\bullet \bullet \bullet$	－00•	$\bullet \bullet$.	－	－•••	$\bullet \bullet \bullet$
Metaldehyde	－	－	－	－0．	$\bigcirc 0 \cdot$	－00•	－00•	－	－	－0••	－	－	－	－	－	－	－
Meth Acrylic Acid	－०••	－＊•	－0．•	－	－	－	－			－0••	$\bullet \bullet \bullet \bullet$	－	－	－	$\bullet \bullet \bullet$	－	－
Methane	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	－•••	－＊＊	－＊＊	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	$\stackrel{\bullet \bullet}{ }$	－＊••	－•••	$\bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	－0．	－．．．	$\bigcirc 00 \cdot$	－०••
Methanol（Methyl Alcohol）	－•••	－．．．	－0．	－哈	－．．．	－0．0	－．．•	－．．．	－．．．	－．．．	－．．．	$\bigcirc 0 \cdot \bullet$	－0．•	－•••	－．．．	－•••	－•••
Methoxychlor	－	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－	－	－
Methyl Abietate	－	－	－＊•	－•••	－•••	－＊•	$\bullet \bullet \bullet$	－	－	－	－${ }^{\bullet \bullet}$	－	－	－	－	－	－
Methyl Acetate	$\bigcirc 0 \cdot$－	$\stackrel{\bullet \bullet}{ }$		$\bigcirc 00$－	$\bigcirc 0 \cdot$	－00•	－00•	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot$－	$\bigcirc 00$－	－•••	${ }^{\circ} \stackrel{0}{ }$	－00•	－00•	${ }^{\circ} \stackrel{0}{ }$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \bullet$
Methyl Acetoacetate	$\bigcirc 00 \cdot$		－00•	－00•	$\bigcirc 00$－	－00•	－00•	－＊．．	$\bigcirc 0 \cdot \bullet$	－00•	－．．．	$\bigcirc 00 \bullet$	－00•	－	－0．	－听	－00•
Methyl Acetophenone	－	－	－00•	－0．	－0．\bullet	－00•	－00•	－	－	－	－•••	－	－	－	－	－	－
Methyl Acrylate	$\bigcirc 0 \cdot$	－＊•	－0．${ }^{\circ}$	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	－00•	－00•	－00•	－0．	－0．	－•••	$\bigcirc 0 \cdot$－	－00•	${ }^{\circ} 0 \cdot$	－00•	$\bigcirc \bullet \bullet$	${ }^{\circ} 0 \bullet$

												$\begin{aligned} & \text { 岂 } \\ & \text { 品 } \\ & \text { 응 } \\ & \text { 폰 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Methyl Alcohol（Methanol）	$\bullet \bullet \bullet \bullet$	－•••	－0．	－＊••	－•••	$\bigcirc 00 \bullet$	$\bullet \bullet \bullet \bullet$	－•••	－•••	－•••	－＊••	$\bigcirc 0 \cdot \bullet$	－00•	－•••	－•••	$\bullet \bullet \bullet$	－•••
Methyl Amine	－＊＊＊	－＊．•		$\bigcirc 00 \cdot$	－00•	${ }^{\circ} 0 \cdot 0$	－00•	－	－	－0．•	－．．．	－00•	－	－	－	－	－0．७
Methyl Amyl Alcohol	－＊••	－＊••	$\bigcirc 0 \cdot$－	$\bigcirc \bigcirc \bullet$	－＊•	$00 \cdot$	$\bullet \bullet \bullet$	－	－	－	－＊．•	$\bullet \bullet \bullet$	－	－	－	$\bullet \bullet \bullet$	－＊••
Methyl Amyl Ketone	－00•	－	－	－	－	－	－	－	－	$\bigcirc 0 \cdot$	－．．．	－	－	－	－	－．．．	－00•
Methyl Aniline	－•••	－＊．	－＊••	－	－	－	－	－	－	－	－	－•••	－0．\bullet	－00•	－	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Methyl Anthranilate	－	－	－．．．•	－	．	－	－	－	－＊．•	－	－．．．	$\bigcirc 0 \cdot$－	$\bigcirc \bullet \bullet$	－0．•	－	$\bigcirc 0 \cdot \bullet$	－00•
Methyl Benzene	－00•	$\bigcirc 00 \cdot$	－＊．•	－	－	－	－	$\bigcirc 0 \cdot$	－＊．•	$\bigcirc 0 \cdot$	－．．．	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot \bullet$	－00•	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot \bullet$	－00•
Methyl Benzoate	－0．\bullet	$\bigcirc 0 \cdot$－	－．．．	－＊．	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc 0$.	－．．．	$\bigcirc 0 \cdot$－	－．．．	－0．	－००•	－००•	－＊•	－0．•	－0．•
Methyl Bichloride	－00•	－0••	－＊••	－	－	－	－	－	－	－	－	－	－00•	－	－	－0．•	－00•
Methyl Bromide	－＊••	$\bigcirc 0 \cdot$	－．．．	－＊．	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－•••	－＊•	－．．．	－0．	－0．•	－००॰	－＊•	－	－००॰
Methyl Butyl Ketone	${ }^{\circ}$－	－＊••	－0．	－		－	－00•	$\bigcirc 0$.	$\bigcirc 0$.	$\bigcirc 0$.	－．．．	${ }^{\circ} 0 \cdot$	${ }^{\circ} \bullet \bullet$	${ }^{\circ} 0 \cdot 0$	$\bigcirc 0$.	$\bullet \bullet \bullet \bullet$	${ }^{0} 0 \cdot$
Methyl Butyrate Cellosolve	－०••	$\bullet \bullet \bullet$	－•••	－	－	－	－	－＊•	－•••	－0••	$\bullet \bullet \bullet$	－•••	$\bigcirc 0 \cdot \bullet$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－$\bullet \bullet$
Methyl Butyrate Chloride	－	－	－	－	－	－	－	－	－	－0．•	－	－	－	－	－	－	－
Methyl Carbitol	－	－0．•	－	－	－	．	－	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	－
Methyl Carbonate	－00•	$\bigcirc 0 \cdot$	－•••	－	$\bullet \bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－0．•	$\stackrel{\bullet \bullet}{ }$	$\bigcirc 00 \cdot$	－．．．	$\bigcirc 0 \cdot \bullet$	$\bigcirc 00 \bullet$	－00•	－＊＊	－00•	－00•
Methyl Cellosolve	－0．•	－．．．	$\bigcirc 00$－	－	$\bigcirc 00$	－	－00•	$\bigcirc 0$.	$\bigcirc 0$.	－0．•	－．．．	$000 \cdot$	－0．	－00•	－．．．	－＊•＊	－00•
Methyl Cellulose	－＊＊		$\bigcirc 00$－	－0．\bullet	$\bigcirc 0 \cdot$－	$\bigcirc 00 \cdot$	－00•	－＊•	$\bigcirc 0 \cdot$－	$\bigcirc \bullet \bullet$	－．．•	－$\bullet \bullet$	$\bullet \bullet \bullet$	$\stackrel{\bullet \bullet}{ }$	－＊＊	$\bullet \bullet \bullet$	－＊＊
Methyl Chloracetate	－	－	－	－	－	－	－	－	－	－0••	－$\cdot \bullet$	－	－	－	－	－	－
Methyl Chloride	$\bigcirc 00 \bullet$	$\bigcirc 0 \cdot$	－＊••	－＊••	－•••	$\stackrel{\bullet \bullet}{ }$	$\bullet \bullet \bullet \bullet$	$\bigcirc 0 \cdot$	－＊••		－＊＊	$\bigcirc 0 \cdot \bullet$	$\bigcirc 00 \bullet$	－00•	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot \bullet$	－00•
Methyl Chloroform	－0．•	－0．•	－．．．	－．．．	－．．．	－$\bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bigcirc 0 \cdot$	－＊•	$\bigcirc \bigcirc \bullet$	－${ }^{\bullet \bullet}$			－00•	$\bigcirc 0 \cdot$		－00•
Methyl Chloroformate	－0，－	$\bigcirc 0 \cdot \bullet$	－＊．	－．．．	－．．．	－＊•	$\bullet \bullet \bullet$	$\bigcirc 0$.	－＊．		－．．．	${ }^{\circ} \bullet$ •	－00•	－00•	－＊＊	${ }^{\circ} 0 \cdot$	－00•
Methyl Cyanide	－०••	－＊＊	－	－	－	－	－	－	－	－0．॰	－	－•••	－	－	－	－•••	－＊••
Methyl Cyclohexanone	－	－	$\bigcirc 00 \bullet$	$\bigcirc 00$	${ }^{\circ} \stackrel{\bullet}{ }$	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \bullet$	－	－	－•••	－＊＊＊	－	－	－	－	－	－
Methyl Cyclopentane	－00•		－•••	－•••	－•••	－•••	$\bullet \bullet \bullet$		－＊••		－•••	${ }^{\circ} 0 \cdot$	$\bigcirc 00 \bullet$	－00•	－＊＊	$\bigcirc 00 \bullet$	－00•
Methyl Dichloride	－00•	$\bigcirc 0 \cdot$－	－	－	－	－	－	－	－	－	－	${ }^{\circ} \stackrel{0}{ }$	－	－	－	－	${ }^{\circ} 0 \bullet$
Methyl Ether	$\bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	－00•	$\bigcirc 0 \cdot$－	－00•	－00•	－00•	$\bullet \bullet \bullet \bullet$	－•••	－•••	－＊＊	${ }^{\circ} \bullet \bullet$	－	$\bullet \bullet \bullet$	${ }^{\circ} \stackrel{ }{ }$	${ }^{\circ} \bullet \bullet$	${ }^{000 \bullet}$
Methyl Ethyl Ketone（MEK）	－00•	$\bullet \bullet \bullet \bullet$	${ }^{\circ} \bullet$		${ }^{\circ} \stackrel{\bullet}{ }$	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \bullet$	${ }^{\circ} \bullet$		${ }^{\circ} \bullet$	－＊＊	${ }^{\circ} \bullet \bullet$	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$	$\bigcirc 0 \cdot \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$
Methyl Ethyl Ketone Peroxide	－00•	${ }^{\circ} \bullet$	${ }^{\circ} 0 \cdot$	－	－	－	－	－＊••		${ }^{\circ} \bullet$	－＊••	${ }^{\circ} 0 \cdot$	${ }^{\circ} \stackrel{0}{ }$		－	${ }^{\circ} \stackrel{\bullet}{ }$	${ }^{\circ} 0 \bullet$

								$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { जn } \end{aligned}$				$\begin{aligned} & \text { 岂 } \\ & \text { 品 } \\ & \text { 응 } \\ & \text { 롤 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Methyl Formate	$\bigcirc 0 \cdot \bullet$	－＊•		－00•	$\bigcirc \bigcirc \bullet$	－00•	$\bigcirc 0$.	－•••	$\bigcirc \bigcirc \bullet$	－0．•	－•••	－•••	－00•	$\bigcirc 0 \cdot$	$\bigcirc \bigcirc \bullet$	－•••	－00•
Methyl Hexyl Ketone	－0．•	－		$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$－	－0．•	$\bigcirc 0 \cdot$－	－	－	－0．•	－．．．	－	－	－	－	－•••	－00•
Methyl Iodide		－•••	－	－	－	－	－	－	－	－•••	－＊．•	－0．•	－	－	－	$\bullet \bullet \bullet$	－•••
Methyl Isobutyl Ketone（MIBK）	$\bigcirc 00 \cdot$	－0．•	－0．	－0．	$\bigcirc 0 \cdot$	－00•	－0．	－0．	$\bigcirc 0$.	－0．	－．．．	$\bigcirc 0 \cdot \bullet$	－00•	－0．	$\bigcirc 0 \cdot$－	$\bigcirc \bigcirc \bullet$	－00•
Methyl Isocyanate	－	－	$\bigcirc 00 \cdot$	－0．•	－•••	$\bigcirc 00 \cdot$	－•••	－	－	－0．•	－．．．	－	－	－	－	－	－
Methyl Isopropyl Ketone	－००•	－＊•	－0．	－0．${ }^{\circ}$	－0．${ }^{\circ}$	－0．•	－0．	－००	－0．	－0．	－．．．	－००－	－0．－	$\bigcirc 0 \cdot$	－	$\bigcirc \bullet \bullet$	－00•
Methyl Lactate	－	－	－	－	－	．	．	－	－	－0••	－•••	－	．	－	－	－	－
Methyl Mercaptan	－	$\bullet \bullet \bullet \bullet$	－0••	－$\bullet \bullet$	－$\bullet \bullet$	－0••	－＊．•	－	．	．	－．．．	－	．	－	－	$\bigcirc \bullet \bullet$	－
Methyl Methacrylate	$\bigcirc \bigcirc \bullet$	$\bigcirc 0 \cdot$	$\bigcirc \bigcirc \bullet$	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot \bullet$	－0．	$\bigcirc \bigcirc \bullet$	$\bigcirc 0 \cdot$	$\bigcirc \bigcirc \bullet$	－＊．•	$\bigcirc \bigcirc \bigcirc$	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot \bullet$	－	－00•
Methyl Oleate		－＊•	$\bigcirc \bullet \bullet$	－．．．	－．．．	$\bullet \bullet \bullet$	$\bullet \bullet$.	－००	－．．．	－0．	－．．．	－०．•	－	－००	－．．．	$\bigcirc \bullet \bullet$	－००॰
Methyl Phenylacetate	－	－	－0．${ }^{\circ}$	－0．\bullet	$\bigcirc 0$.	－0．\bullet	－0．	－	－	－	－．．．	－	－	－	－	－	－
Methyl Salicylate	－००•	－＊•	$\bullet \bullet \bullet$	－＊•	$\bullet \bullet \bullet$	－．．•	－．．•	－	．	．	－．．．	－0．•	－	－	－0．•	－•••	－०••
Methyl tert－Butyl Ether（MTBE）	－0••	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$－	－	$\bigcirc 00$－	．	$\bigcirc 0$.	－	－	－0．•	－．．．	－0••	－	－	－••	－	－
n－Methyl－2－Pyrrolidone	－	－＊••	－．．．	－	－	－	－	－•••	－＊••	－	－．．．	－	－	－	－	－	－
Methyl－2－Pyrrolidone	－	－＊．．	－＊．．	－	－	－	．	－＊．．	－＊．	－	－•••	－	－	－	－	－	－
Methylallyl Chloride	－•••	－	－०••	－	－	－	－	－	－	－	－	－	－	－	－	$\bigcirc \bullet \bullet$	${ }^{\circ} 0 \cdot$
Methylcyclopentane	$\bigcirc 0 \cdot \bullet$	－0．	$\bullet \bullet \cdot \bullet$	－	－	－	－	－0．	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$－	－•••	－	－	－	－＊•	－	－
Methylene Bromide	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	－•••	－	－	．	－	－	－．．．	－	－．．．	$\bigcirc \bigcirc \bullet$	－	－	－		${ }^{\circ} 0 \cdot$
Methylene Chloride	$\bigcirc 0 \cdot$－	－0．•	－•••	－	－	－	－	－0＊	－＊．	$\bigcirc 0 \cdot$－	－•••	${ }^{\circ} \bullet \bullet$	－00•	${ }^{\circ} \stackrel{0}{ }$	－	${ }^{\circ} \bullet$	${ }^{\circ} 0 \cdot$
Methylene Chlorobromide	$\bigcirc \bigcirc$	－	○○•	－	－	－	－	－	－	－	－	$\bigcirc \bigcirc$	－	－	－	${ }^{\circ} \bullet \bullet$	${ }^{\circ}$－\bullet
Methylene Dichloride	$\bigcirc 0 \cdot \bullet$	${ }^{\circ} 0 \cdot$	$\cdots \cdot \bullet$	－	－	\cdot	－	－0॰•	－＊•	－	－•••		－	－00•	－	$\bigcirc \bigcirc \bullet$	${ }^{\circ} 0 \bullet$
Milk	－•••	－．．．	－．．．	－．．．	－．．．	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－＊＊	－＊••	－$\cdot \bullet$	－•••	－＊•	$\bullet \bullet \bullet$	－＊＊	－•••	$\bullet \bullet \bullet$
Mineral oil	$\bullet \bullet \bullet \bullet$	$\bigcirc 0$.	－•••	－．．．	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊＊	－•••	－$\cdot \bullet$	－$\cdot \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} \bullet$	－$\cdot \bullet$	$\bigcirc \bullet \bullet$	${ }^{000}$ •
Mixed Acids	－0．\bullet	${ }^{\circ}$－	－0••	－	－	－	－	－००•	－0．•	－0．•	－•••	－	－	－	${ }^{\circ} \bullet \bullet$	－	－
Mobil 24DTE	$\bullet \bullet \bullet$	${ }^{\circ}$－	－	－	－	－	－	－0॰	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet$		${ }^{\circ} 0 \bullet$
Mobil 600 Series	－	－	－	－	－	－	－	－	－	－0．•	－	－	－	－	－	－	${ }^{\circ} 0 \cdot$
Mobil Delvac 110011101120	$\bullet \bullet \bullet$		－•••	－＊＊	－＊＊	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	－•••	－＊＊•	－＊••	－＊••	－00•	－•••	$\bigcirc 0 \bullet$	${ }^{000}$
Mobil hF	$\bullet \bullet \bullet$	${ }^{\circ} \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－$\bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} \bullet$ •	$\stackrel{\bullet \bullet}{ }$	$\bigcirc 0 \bullet$	${ }^{\circ} 0 \bullet$

								$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { O} \\ & \text { 訁 } \\ & \text { O} \\ & 0 \\ & \vec{Z} \end{aligned}$								
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Mobil Nivac 20， 30	－•••	－•••	－•••	－•••	－•••	－•••	－•••	－•••	－•••	－•••	－•••	－•••	－	－•••	－•••	$\bullet \bullet \bullet$	－•••
Mobil SHC 500 Series	－	－	－	－	－	－	－	－	－	－0．•	－	－	－	－	－	－	－
Mobil Therm 600	－•••	$\bigcirc 0$－	－＊．॰	－＊．	－＊．	－•••	$\bullet \bullet \bullet$	－0．	－．．॰	－•••	－＊．	－＊＊	－＊•	－0．	－．．•	－0．	－००॰
Mobil Velocite C	－＊＊	$\bigcirc 0 \cdot$－	－	－	－	－	－	－0．	－．．．	－＊••	－	－＊＊	$\bigcirc \bullet \bullet$	－00•	－＊．•	－0．	－0．＾
Mobilgas WA200 ATF	－＊＊＊	$\bigcirc 0 \bullet$	－	－	－	－	．	$\bigcirc 0 \cdot \bullet$	－．．．	－•••	－	－＊＊	$\bullet \bullet \cdot \bullet$	$\bigcirc 0 \cdot \bullet$	－＊．•	$\bigcirc 0 \cdot \bullet$	
Mobilgear 600 Series	－0．•	－०••	－$\cdot \bullet$	－	－	－	－	$\bullet \bullet \bullet \bullet$	－＊••	$\bigcirc \bullet \bullet$	－＊••	$\bigcirc 0 \cdot$－	－．．．	$\bullet \bullet \bullet$	－	－0••	${ }^{\circ} 0$－
Mobilgear SHC ISO Series	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot \bullet$	－．．．	－	－	－	－	$\bullet \bullet \cdot \bullet$	－．．．	－0••	－•••	$\bigcirc 00 \cdot$	－••	－•••	－	－0．•	－0．＾
Mobilgraese HTS	－＊．	$\bigcirc 0 \cdot$－	－．．．	－	－	－	－	－•••	－．．．	－＊．．	－．．．	－0．	－•••	－•••	－	－0．	－००．
Mobilgrease HP	－＊••	$\bigcirc 0 \cdot$	－．．．	－	－	－	－	－•••	－．．．	－＊••	－．．．	－0．	－•••	－＊．•	－	－0．${ }^{\circ}$	－0．•
Mobilgrease SM	－＊．•	－0．	－．．．	．	－	－	－	－＊．•	－．．．	－＊．．	－．．．	$\bigcirc 0 \cdot$	－•••	－．．．	．	－००•	－००
Mobilith AW Series	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$	$\bullet \bullet \cdot \bullet$	－	－	－	－	$\stackrel{\bullet \bullet}{ }$	－•••	－＊••	－•••	$\bigcirc 00$－	$\bullet \bullet \cdot \bullet$	$\stackrel{\bullet \bullet}{ }$	－		－00•
Mobilith SHC Series	－＊＊	－0．	－．．．	－	－	－	－	－＊•	－．．．	－•••	－．．．	－0．	－•••	－0．•	－	－0．•	－००॰
Mobillet II Lubricant	－	－	$\bullet \bullet \bullet \bullet$	－•••	－．．•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－＊••	－	－	－	－	－	－
Mobilmistlube Series	－0．0	$\bigcirc \bigcirc \bullet$	－．．．	．	－	－	．	$\bullet \bullet \bullet$	－．．॰	－0．•	－．．．	－0．	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－	－0••	－ 0 －
Mobiloil SAE 20	－•••	$\bigcirc 00 \cdot$	．	－	－	－	－	－0．	－．．•	－•••	－	$\bigcirc \bullet \bullet$	－•••	－00•	－•••	$\bigcirc 0 \cdot \bullet$	－0．＾
Mobilux	－．．•	$\bigcirc 0 \cdot$	－	－	－	－	．	－0．	－．．．	$\bullet \bullet \bullet$	－	－＊．	－．．•	－0．	－．．．	－0．	－
Molybdenum Disulfide Grease	－．．•	$\bigcirc 00 \cdot$	－＊．＊	－•••	－＊．	－＊•	－•••	－	$\bigcirc 0$.	－	$\bullet \bullet \bullet \bullet$	－	－	－	－＊＊	$\bullet \bullet \bullet \bullet$	\cdot
Molybdenum Oxide	－0．0	－．．．	－0．0	－	－	－	－	$\bigcirc \bullet \bullet$	－．．．	－0．•	－．．．	－．．＊	－0．0	－•••	－	－•••	－•••
Molybdic Acid	$\bigcirc 0 \cdot \bullet$	－．．．	－0．0	－	－	－	．	－＊••	－．．．	－0••	－•••	－•••	－0．	－•••	－	－•••	－•••
Monobromobenzene	$\bigcirc 0 \cdot$－		－•••	－	－	－	－	$\bigcirc 0 \cdot \bullet$	$\bigcirc \bullet \bullet$	－0．＊	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$		${ }^{\circ} \bullet$ •	－	${ }^{\circ} \bullet \bullet$	${ }^{\circ}$－
Monobutyl Ether	－＊•	－0．•	$\bigcirc \bigcirc \bigcirc$	－	－	－	－	${ }^{\circ} \stackrel{\bullet}{ }$	$\bigcirc \bullet \bullet$	－	－	－0••	$\bullet \bullet \bullet$	${ }^{\circ} \bullet$ •	－	－0••	－00•
Monochlorobutene	－	－	－•••	－	－	－	－	－	$\stackrel{\bullet \bullet}{ }$	－	$\bullet \bullet \bullet$	$\bigcirc 0$.	－0••	${ }^{\circ} 0 \cdot$	－	${ }^{\circ} 0 \cdot$	${ }^{\circ} \bullet \bullet$
Monochloroacetic Acid	－00•	－0••	－	－	－	－	－	－		－$\bullet \bullet$	－	－0••	${ }^{\circ} 0 \cdot$	${ }^{\circ} \bullet$ •	\bullet	$\bullet \bullet \bullet$	－
Monochloroacetone	$\bigcirc 0 \cdot$	－．．•	－．．．	－	－	－	－	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$	－	\checkmark	$\bigcirc 0 \cdot \bullet$	－00•	$\bigcirc 0 \cdot$ •	$\bigcirc 0$.	－0．•	－＊••
Monochlorobenzene	$\bigcirc 00$－	$\bigcirc 0$.	－．．．	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	$\bigcirc \bullet \bullet$	－0．0	$\bullet \bullet \bullet$	$\bigcirc 00$－	${ }^{\circ} \bullet \bullet$	${ }^{\circ} 0 \cdot$	－	$\bigcirc 0 \cdot$－	－00•
Monochlorophenol	－00•	$\bigcirc 00 \cdot$	－＊＊	－	－	－	－	－0．0	$\stackrel{\bullet \bullet}{ }$	－	－	${ }^{\circ} 0$	－00•	${ }^{000}$	－	$\bigcirc 00 \cdot$	${ }^{\circ}$－
Monoethanol Amine		$\bigcirc \bullet \bullet$	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\bullet \bullet} \cdot$	$\bigcirc 0 \cdot$	$\bigcirc \bigcirc$	$\bullet \bullet \bullet$	－＊＊＊	${ }^{\circ} \bullet \bullet$	${ }^{\circ} 0 \cdot$	－	－＊••	－＊••
Monoisoproyl Amine	－0．•	－．．．	－0．•	－	－	－	－	－＊••	－•••	००•	－．．．	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$

MOLYBDENUM DISULFIDE

MoS2 excels as a lubricating material due to its layered structure and low coefficient of friction. Interlayer sliding dissipates energy when a shear stress is applied to the material. Extensive work has been performed to characterize the coefficient of friction and shear strength of MoS2 in various atmospheres. The shear strength of MoS2 increases as the coefficient of friction increases. This property is called superlubricity
At ambient conditions, the coefficient of friction for MoS2 was determined to be 0.150, with a corresponding estimated shear strength of 56.0 MPa. Direct methods of measuring the shear strength indicate that the value is closer to 25.3 MPa .

								$\begin{aligned} & \sum_{0}^{u} \\ & \text { U } \\ & \text { जn } \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { ज̄ } \\ & \text { 号 } \\ & \vec{\rightharpoonup} \end{aligned}$								
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Monomethyl Aniline	－00•		－0••	－•••	－•••	－0••	－＊••	${ }^{\circ} 0 \cdot$	－	－0．•	－•••	$\bigcirc 00 \cdot$	${ }^{\circ} 0 \cdot$	－00•	－＊••	－	${ }^{\circ}$－
Monomethyl Hydrazine	－＊＊	－＊••	$\bigcirc 00 \cdot$	－00•	－00•	${ }^{\circ} 0 \cdot 0$	$\bigcirc 00 \cdot$	－0．－	－	－＊•	－＊＊	－＊＊	－00•	－＊••	－＊•	－•••	－0．•
Monovinyl Acetate	－00•	－＊••	－＊••	－	－	－	－	${ }^{\circ} 0 \cdot 0$	－	－	－	$\bigcirc 0 \cdot$－	$00 \cdot$	－00•	－	$\bullet \bullet \bullet$	${ }^{\circ}$－
Monovinyl Acetylene	$\bullet \bullet \bullet$	－．．．	－．．•	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－	－•••	－•••	－	－	－	－0．•	－	－
Mopar Brake Fluid	－0．•	－＊．•	－0．\bullet	－	－	－	－	－0••	－00•	$\bigcirc \bullet \bullet$	－＊•	－＊••	－	－•••	－•••	－＊•	－
Morpholine	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	－	－	－	－	．	－	－	．	．	$\bigcirc 0 \cdot$－	－		．	－	－
Motor Oils	$\bullet \bullet \bullet$	${ }^{\circ} \bullet$	－	－	－	－	－	－	－	－•••	－	$\bigcirc \bullet \bullet$	－＊•	－	－	－	－
Myristic Acid	－	－	－$\cdot \bullet$	$\bullet \bullet \bullet \bullet$	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	$\bullet \bullet \bullet$	－	－	－	－	－	－
Naphtha	－•••	$\bigcirc 0 \cdot$	－．．．	－．．．	－．．•	－•••	－．．．	－0．	－＊．＊	－＊••	－•••	$\bigcirc 0 \cdot$	－0．•	－0．•	－＊．＊	－0．•	－००॰
Napthalene	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	－•••	－•••	－•••	－•••	－．．．	－0．\bullet	－．．．	－००．	－•••	$\bigcirc 0 \cdot$	－＊•	$\bigcirc \bigcirc$	－०．•	$\bigcirc \bigcirc$	－००
Napthalene Sulfonic Acid	－	－	－	－	－	－	－	－	－．．．	－	－•••	$\bigcirc 0 \cdot$－	$\bigcirc 00 \cdot$	－00•	－	${ }^{\circ} 0 \cdot$	${ }^{0} 0 \bullet$
Napthalenic Acid	－	－	－＊••	－	－	－	－	－	$\bullet \bullet \bullet$	－	－•••	$\bigcirc 0 \cdot$	－0••		－	－0．•	－00•
Napthalonic Acid	－	－	－．．•	－	－	－	．	－	－＊．＊	－	－•••	$\bigcirc 0 \cdot$－	－0．•	－00•	－	－0．	\bigcirc
Napthenic Acid	－＊．•	$\bigcirc 0$－	－	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－．．．	－．．．	－•••	$\bigcirc 0 \cdot$－	－	$\bigcirc 00 \bullet$	－	$\bigcirc 0 \cdot \bullet$	－00•
Natural Gas	－．．．	$\bigcirc 00 \cdot$	－•••	－•••	－•••	$\bullet \bullet \bullet \bullet$	－．．•	$\stackrel{\bullet \bullet}{ }$	$\bigcirc 0 \cdot \bullet$	－．．．	－•••	$\bullet \bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	－0••	－•••	$\bigcirc 0 \cdot \bullet$	－0••
Neats Foot Oil	－．．．	－．．．	－．．．	－．．．	－．．．	－．．．	－．．．	－＊••	－．．．	－．．．	－．．．	－0．	－•••	－00•	$\bullet \bullet \bullet \bullet$	${ }^{\bullet \bullet \bullet}$	－0．
Neon	－•••	－．．．	－．．．	－．．．	－•••	－•••	－．．•	$\bullet \bullet \bullet$	－．．．	－•••	－•••	－•••	－•••	$\bullet \bullet \bullet$	－•••	－•••	－＊••
Neville Acid	$\bigcirc 0 \cdot$－	－哈•	－．．．	－．．．	－．．．	－•••	－．．．	$\bigcirc 0 \cdot \bullet$	－听	－0．	－．．．	－00•	－	－00•	－．．．	－．．•	－00•
Nickel Acetate	－＊••	－．．•	－00•	－00•	$\bigcirc 0 \cdot \bullet$	－00•	${ }^{\circ} 0 \cdot 0$	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$－	－＊••	－•••	－＊••	$\bigcirc 00 \bullet$	$\bigcirc 00 \bullet$	－0．	－•••	－•••
Nickel Ammonium Sulfate	－．．．	－．．．	－．．	－．．．	－．．．	$\bigcirc \bullet \bullet$	－．．•	－	－	－0．•	－．．．	－$\bullet \bullet$	－	－	$\bullet \bullet \bullet \bullet$	－	－
Nickel Chloride	－•••	－．．．	－．．．	－．．．	－．．．	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	－•••	－•••	－•••	－＊＊	－0．•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••
Nickel Cyanide	－	－	－	－	－	－	－	－	－	－0••	－•••	－	－	－	－	－	－
Nickel Nitrate	－•＊•	－＊＊•	－•••	－•••	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－	－	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\bullet \bullet \bullet}$	－	－	－	－•••	－•••
Nickel Salts	－．．．	－．．．	－	－	－	－	－	$\bullet \bullet \bullet \bullet$	－．．．	－＊＊		－＊••	－	－•••	－	－•••	－•••
Nickel Sulfate	－•••	－＊．	－•••	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－${ }^{\bullet}$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	${ }^{\circ} \bullet$	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\bullet \bullet \bullet}$
Nicotinamide（Niacinamide）	－	－	－•••	－	－	－	－	－	－＊＊	\checkmark	－＊＊	${ }^{000}$	${ }^{\circ} \bullet \bullet$	${ }^{\circ} 00 \cdot$	－	${ }^{\circ} 0 \cdot$	${ }^{0}$－
Nicotinamide Hydrochloride	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet \bullet$	\bigcirc	－	－	－	－	$\stackrel{\bullet \bullet}{ }$	－＊••	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－＊••
Nicotine	－	－	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－•••	－0．0	$\bigcirc \bullet \bullet$	－	－	－	－

								$\begin{aligned} & \text { 岂 } \\ & \text { O} \\ & \text { ज } \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { ज̄ } \\ & \text { 号 } \\ & \vec{\rightharpoonup} \end{aligned}$			$\begin{aligned} & \text { 岂 } \\ & \text { 品 } \\ & \text { 응 } \\ & \text { 롤 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Nicotine Sulfate	－•••	－	－	－	－	－	－	－	－	－0••	－	－•••	－•••	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Niter Cake	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－＊••	－＊＊	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	－•••	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－\bullet^{\bullet}	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Nitric Acid 10\％	－00•	－0．•	－．．॰	－．．．	－．．＊	－•••	$\bullet \bullet \bullet$	－•••	－•••	$\bigcirc 0$.	－•••	－0．	－0．0	－0．	－•••	－•••	－00•
Nitric Acid 70\％	－0．	$\bigcirc 0 \cdot$	－＊．．	－．．．	－．．．	－．．．	－0．•	－0．	－0．•	－	－．．．	$\bigcirc 0 \cdot \bullet$	－00•	－00•	－0．•	－00•	－00•
Nitric Acid，Conc．	$\bigcirc 00 \bullet$	－0．•	－	－	－	－	－	$\bigcirc 00$	－0．•	－0．•	－•••	$\bigcirc 00 \bullet$	－00•	$\bigcirc 00 \cdot$	－．．•	$\bigcirc 0 \cdot$	－00•
Nitric Acid，Red Fuming	$\bigcirc \bigcirc \bigcirc$	－0．	－0••	－＊•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－००	－0．•	－00•	$\bullet \bullet \bullet$		－0．0	－0．•	$\bigcirc \bigcirc \bullet$	$\bigcirc 0 \cdot$	－0．•
Nitric Acid，White Fuming	－0．\bullet	$\bigcirc 0 \cdot$	－	－	．	．	－	－0．	－0．	－0．\bullet	－	－0．\bullet	－0．•	－0．	－	－00•	－00•
Nitroaniline	－	－	－	－	－	－	－	－	－	－0••	$\bullet \bullet \bullet \bullet$	－	－	－	－	－	－
Nitrobenzene		${ }^{\circ} \stackrel{\text {－}}{ }$	－0．•	－＊•	－•••	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$		$\bigcirc 0 \cdot$－	－．．．	${ }^{\circ} \bullet$	$\bigcirc 00 \bullet$	${ }^{\circ} 0 \cdot$	－•••	$\bigcirc \bullet \bullet$	${ }^{\circ}$－\bullet
Nitrobenzoic Acid	－	－	－	－	－	－	－	－	－	－0．•	－•••	－	－	－	－	－	－
Nitrocellulose	－	－	－	－	－	－	－	－	－	－0••	－•••	－	－	－	－	－	－
Nitrochlorobenzene	－०••	－．．．	－0．•	－	－	－	－	－＊••	－$\bullet \bullet$	－०••	－．．．	$\bullet \bullet \bullet$	－00•	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$
Nitrochloroform	$\bigcirc \bullet \bullet$	－＊＊＊	$\bullet \bullet \bullet \bullet$	－	－	－	－	－＊••	－．．．	－0．0	－．．．	－•••	－0．•	－•••	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Nitrodiethyl Aniline	$\bigcirc \bullet \bullet$	－＊．•	－0．•	－	－	－	－	－＊•	－．．•	－0．•	－．．．	－•••	－0．\bullet	－•••	－	－•••	－•••
Nitroethane	－00•	－＊．	－0．\bullet	－0．\bullet	－0．	－00•	－00•	－00．	－0．\bullet	－00•	－．．．	－0••	－00•	－＊••	－•••	$\bigcirc \bullet \bullet$	－＊••
Nitrofluorobenzene	－0••	－＊••	－0••	－	－	－	－	－•••	$\bullet \bullet \bullet \bullet$	－0••	－•••	$\bullet \bullet \bullet$	－00•	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Nitrogen	$\bullet \bullet \bullet$	－＊＊	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	－．．．	－•••	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Nitrogen Oxide（s）		－0．\bullet	$\bigcirc 00 \cdot$	$\bigcirc 0$.	$\bigcirc 00$－	－0．\bullet	－0．	－००		－0．•	－．．．	$\bigcirc 00 \cdot$	－	$\bigcirc 00 \cdot$	－	－0．	－00•
Nitrogen Tetroxide（ ${ }^{\text {204 }}$ ）	－0．\bullet	$\bigcirc 0 \cdot$－	－0．•	－0．	$\bigcirc 0 \cdot$	－00•	－0．	－0．	－0．	－00•	－•••	－0．•	－00•	－00•	－•••	$\bigcirc \bullet \bullet$	${ }^{\circ} 0 \bullet$
Nitroglycerine	－	－	－	－	－	－	－	－	－	－0••	－$\cdot \bullet$	－	－	－	－	－	－
Nitroglycerol	${ }^{\circ} \bullet \bullet$	－＊••	－0．0	－	－	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－0．\bullet	－．．．	$\bullet \bullet \bullet$	－0．•	$\bullet \bullet \bullet$	－•••	－	$\bullet \bullet \bullet$
Nitromethane	$\bigcirc \bigcirc \bigcirc$	－．．．	－0．${ }^{\circ}$	${ }^{\circ} \bullet$	－0．		－00•	－0．	－0．	－0．	－．．．	－0．0	$\bigcirc 0 \cdot$－	－00•	－0．•	$\bigcirc \bullet \bullet$	－．．॰
Nitrophenol	－	－	－	－	－	－	－	－	－	－•••	－•••	－	－	－	－	－	－
Nitropropane	－0．•	－＊．	$\bigcirc 00$－	－0．	$\bigcirc 0$.	－0．\bullet	－००．	－00•	－0．•	${ }^{\circ} \bullet$	－$\cdot \bullet$	$\bigcirc 0 \cdot$－	－00•	${ }^{\circ} \bullet \bullet$	－＊•	$\bigcirc \bullet \bullet$	${ }^{\circ} 0 \bullet$
Nitrothiophene	${ }^{\circ} \bullet \bullet$	－•••	－0••	－	－	－	－	－$\bullet \bullet$	－•••	－0••	－${ }^{\bullet \bullet}$	－	${ }^{\circ} 0$－	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Nitrotoluene	－	－	－	－	－	－	－	－	－	－0••	－•••	－	－	－	－	－	－
Nitrous Acid	－00•	－．．．	－	－	－	－	－	－	－	－0．0	－•••	－	－	－	－	－	${ }^{\circ} \bullet \bullet$
Nitrous Oxide	$\bullet \bullet \bullet$	－•••	－0．•	－禹	－0．•	－0••	－0••	$\bullet \bullet \bullet$	－	－•••	－•••	－	$\bigcirc \bullet \bullet$	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$

								$\begin{aligned} & \text { 岂 } \\ & \text { O} \\ & \text { 㤩 } \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { O} \\ & \text { 訁 } \\ & \text { O} \\ & \text { O} \\ & \vec{U} \end{aligned}$			岂 学 응 몽					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Nonane	－	－	－•••	－•••	－•••	－•••	－•••	－	－	－•••	－•••	－	－	－	－	－	－
Nyvac FR200 Mobil	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－．．•	－	－	－	－	－	－	－＊••	－．．．	－0．•	－	$\bigcirc \bullet \bullet$	－	$\bigcirc 0 \cdot$	－0．＾
Octachlorotoluene	－00•	$\bigcirc 00 \cdot$	－•••	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc 00 \bullet$	－＊••	$000 \cdot$	－•••	－00•	$000 \cdot$	$\bigcirc 0 \cdot \bullet$	－0••		－00•
Octadecane	－•••	－0．•	－＊．•	－	－	－	－	－00•	－＊．•	－＊．•	－．．．	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	$00 \cdot \bullet$	－＊••	$\bigcirc 0 \cdot$	－00•
n－Octane	－•••	－००	－．．．	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot \bullet$	$\bigcirc 00 \bullet$	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot \bullet$	－＊．•	－＊．•	－．．．	－00•	$000 \cdot$	$\bigcirc 0 \cdot \bullet$	－＊．．	$\bigcirc 00 \cdot$	－0．•
Octane	－•••	－0．	－．．．	－0．	－0．${ }^{\circ}$	－००॰	－0．	－0．\bullet	－＊．．	－．．．	－．．．	－0．•	－0．		－＊．．	－0．	－0．•
Octanol（ n －Octanaldehyde）	－•••	－•••	－00•	－00•	－0．	－00•	${ }^{\circ} 0 \cdot$	－•••	－听	－听	－•••	－＊••	${ }^{\circ}$－	－•••	－	－＊••	－＊••
n－Octyl Acetate	－0．•	－．．．	－0．•	－	$\bigcirc 0 \cdot$	－	$\bigcirc \bigcirc$	－＊••	－＊．•	－0．•	－．．．	－	$\bigcirc 00 \cdot$	－•••	－	－＊＊＊	－•••
Octyl Acetate	$\bigcirc 0 \cdot \bullet$	－•••	－0．0	－	$\bigcirc 0 \cdot$－	－	$\bigcirc 0 \cdot$ •	－．．•	－．．．	－0．0	－．．．	－	$\bigcirc 0 \cdot$	－•••	－	－•••	－•••
Octyl Alcohol	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	－．．•	$\bigcirc \bullet \bullet$	－0．•	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$
Octyl Chloride	－	－	－	－	－	－	－	．	－	－．．•	－•••	－	－	－	－	－	－
Octyl Phthalate	．	－	－0．•	－．．．	－．．．	－०••	－•••	－	－	－	－	－	－	－	－	－	－
Olefins	－	－	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \cdot \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－•••	－	－	－	－	－	－
Oleic Acid	$\bullet \bullet \bullet$	－0．	－＊．＊	－．．．	－．．．	－．．．	－•••	－0．\bullet	－．．॰	－0．0	－•••	－0．•	$\bigcirc \bullet \bullet$	－0．	－•••	$\bigcirc 0 \cdot$－	－0．•
Oleum（Fuming Sulfuric Acid）	$000 \cdot$	－0．	－＊．•	－蛧	－蛨	－＊••	－•••	－0．\bullet	－0．	－•••	－•••	－00•	${ }^{\circ} 0 \cdot 0$	－00•	－＊．．	${ }^{\circ} 0 \cdot$	${ }^{\circ} \mathrm{o} \bullet$
Oleum Spirits	$\bullet \bullet \bullet$	－0．	－	－	－	－	－	$\bigcirc 0 \cdot$－	－•••	－•••	－．．．	－0．•	－0．•	－0．	－	－0．	$\bigcirc 0 \cdot$－
Oleyl Alchol	－	－	－•••	－•••	－．．．	－•••	－•••	－	－	$\bigcirc \bullet \bullet$	－．．．	－	－	－	－	－	－
Olive oil	$\bullet \bullet \bullet$	－＊•	－．．．	－．．．	－．．．	－．．．	－•••	$\bigcirc \bigcirc \bullet$	－．．．	－．．．	－•••	$\bigcirc 0 \bullet$ •	－•••	$\bigcirc 0 \cdot \bullet$	－•••	－＊•	－0．＾
Oronite 8200	－＊••	－0．	－．．．	－•••	－．．．	－•••	－•••	$\bigcirc 0 \cdot \bullet$	－．．．	－•••	－•••	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	${ }^{\circ} \stackrel{0}{ }$	${ }^{\circ}$－
Oronite 8515	－＊•	${ }^{\circ} \bullet$	$\bullet \bullet \bullet$	－．．．	－．．．	$\bullet \bullet \bullet$	－•••		－＊．．	－＊•	－．．．		$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	${ }^{\circ} \stackrel{0}{ }$	${ }^{\circ}$－
Oronite M2V	－	－	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot \bullet$	$\bigcirc 00 \cdot$	－0．•	$\bigcirc 00 \cdot$	－	－	－	－	－	－	－	－	－	－
Orthochloro Aniline	－0••	$\bullet \bullet \bullet$	－0••	－	－	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} \bullet$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Orthochloro Ethyl Benzene	－00•	－0．0	－•••	－•••	－•••	－＊•	－•••	－0．0	－．．．	$\bigcirc 00 \cdot$	－•••	－00•	${ }^{\circ} 0 \cdot$	－0．\bullet	－००	${ }^{\circ} 0 \cdot 0$	－00•
Orthochloro Phenol	－0••	$\bullet \bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	－	－	－	－	－•••	－＊＊	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－•••	－	－•••	－$\bullet \bullet$
Orthocresol	－0••	$\bullet \bullet \bullet$	－0••	－	－	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－0••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} \bullet$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet \bullet$	－•••
Orthodichloro Benzene	－0．	－0．	－•••	－	－	－	－	$\bigcirc 00 \cdot$	－＊．．	$\bigcirc 00 \cdot$	$\bullet \bullet \bullet$	－00•	－00•	－00•	－	$\bigcirc 00 \cdot$	－0．•
Orthonitro Toluene	－0．•	－•••	－0．0	－	－	－	－	－•••	－．．．	－0．0	－•••	－•••	－00•	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－•••
0S－45 Type III（0s45）	－＊••	－००	－•••	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$		$\stackrel{\bullet \bullet}{ }$	－＊••	－	$\bullet \bullet \bullet$	－	${ }^{\circ} \bullet \bullet$	－	－	${ }^{\circ}$ •

								$\begin{aligned} & \text { 山 } \\ & \text { U } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { ज̄ } \\ & \text { 号 } \\ & \vec{\rightharpoonup} \end{aligned}$			$\begin{aligned} & \text { 岂 } \\ & \text { 营 } \\ & \text { 응 } \\ & \text { 롭 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
OS－45Type IV（0s45－1）	－•••	$\bigcirc 0$.	－•••	－•••	－•••	－•••	－•••		－＊••	－•••	－	－•••	$\bigcirc 00 \cdot$	－0．	－	－0．•	－0．•
0s－70	－＊＊	－0．	－	－	－	－	－	$000 \cdot$	－•••	－＊••	－	－＊．•	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$	－	$\bigcirc 0 \cdot \bullet$	
Oxalic Acid	－＊••	－＊••	－•••	－•••	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－＊．॰	－＊••	－•••	－＊••	－	－•••	－•••	$\bullet \bullet \bullet$	－०••
Oxygen， $100-150^{\circ} \mathrm{C}$	－0．	$\bigcirc 0$.	－••	－	－	－	．	－	－	－0．	－•••	－	－	－	－	－	－
Oxygen， $150-200^{\circ} \mathrm{C}$	－00•	${ }^{\circ}$－	－	－	－	－	－	－	－		－•••	－	－	－	－	－	－
Oxygen，Liquid	$\bigcirc 0 \cdot$－	－0．	－0．\bullet	－0．	－0．	－0．	－0．•	－0．	－0．	－0．•	－＊．．	－0．	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	－	－
Oxygen，Gas	$\bigcirc 0 \cdot$	－0．\bullet	$\bullet \bullet \bullet$	－＊••	－．．．	－＊••	－•••	－＊••	－．．．	－0．	－•••	－0．	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot$	$\bigcirc 00$	－＊•	－0．•
Ozonated Deionized Water	－	－＊•	－0．•	－$\cdot \bullet$	－$\cdot \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－	－	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－	－	－
Ozone	$\bigcirc 0 \cdot$	－．．•	－．．．	－．．．	－．．•	－•••	－•••	$\bullet \bullet \bullet$	－•••	－००．	－•••	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet$		－•••	－＊•	－००॰
p－Cymene	$\bigcirc 0 \cdot$－	－0．•	－．．．	－	－．．．	－	－•••	$\bigcirc 0$.	－．．．	－००	－•••	－0．	$\bigcirc 0 \cdot$	－००	－०．．	－०．	－००
p －Dichlorobenzene	$\bigcirc 0 \cdot$	$\bigcirc 0$.	－•••	－	－•••	－	－•••	$\bigcirc 00 \cdot$	－＊．．	－0．	－•••	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$－	$\bigcirc 0 \bullet$	－0．•	$\bigcirc 00 \cdot$	${ }^{0} 0 \bullet$
p－tert－Butylcaltechol	－0．•	－＊••	－	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－$\cdot \bullet$	－	－•••	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－0．•
Paint Thinner－Duco	－0．	－0．	－0．•	－＊•	－•••	－0．0	－••	－0．\bullet	－＊．＊	－0．•	－•••	－0．	－0．	－0．	－०••	－0．	－00•
Palmitic Acid（Hexadecanoic Acid） 2	$\bullet \bullet$.	－．．•	－．．．	－•••	－．．．	$\bullet \bullet$.	－•••	－＊••	－．．．	－•••	－००	－०••	$\bigcirc 0 \cdot \bullet$	$\bullet \bullet \bullet$		$\stackrel{\bullet \bullet}{ }$	－•••
Par－al－Ketone	－0．	－0．	－0．	－	－0．	－	$\bigcirc 00 \cdot$	－00•	$\bigcirc 00 \cdot$	－0．	－＊．．	$\bigcirc 0 \cdot$ •	－00•	－00．	－00•	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$
Para－Aminobenzoic Acid	－0••	－•••	－0．•	－	－	．	．	$\bigcirc \bullet \bullet$	－•••	－0．•	－•••	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot \bullet$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－•••
Para－Aminosalicylic Acid	－0．•	－．．．	$\bigcirc 0 \cdot \bullet$	－	－	－	－	－•••	－．．．	－०••	－•••	－•••	－0．	－•••	－	－•••	－＊••
Para－Chlorophenol	－0．•	－•••	－0••	－	－	－	－	$\bigcirc \bullet \bullet$	－＊••		－＊＊	$\bullet \bullet \bullet$	－00•	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－•••
Para－Cymene	－	－	－•••	－	－	－	－	－	$\stackrel{\bullet \bullet}{ }$	－	－•••	$\bigcirc 0 \cdot$	－0••	$\bigcirc 0 \cdot$	－	$\bigcirc 0 \cdot$	${ }^{\circ}$－
Para－Dichlorobenzene	$\bigcirc 0$.	－0．	－	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－＊．．	$\bigcirc 0 \cdot$	－	${ }^{\circ} 0 \cdot 0$	－00•	－00•	－	－00•	${ }^{\circ}$－
Para－Formaldehyde	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－0．0	－	－	－	－	－•••	－．．．	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－00•
Para－Nitroaniline	$\bigcirc \bullet \bullet$	－＊＊	－0．•	－	－	－	－	$\bigcirc \bullet \bullet$	－＊＊		－•••	－•••	$\bigcirc 00 \cdot$	－•••	－	－•••	－＊••
Para－Nitrobenzoic Acid		－•••	${ }^{\circ} \bullet \bullet$	－	－	－	－	$\stackrel{\bullet \bullet}{ }$	－${ }^{\circ}$	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－0．	$\bullet \bullet \bullet$	－	－•••	$\bullet \bullet \bullet$
Para－Nitrophenol	－०．•	－．．．	－0．•	－	－	－	－	－＊••	－．．．	००．७	－．．．	－•••	－0．•	－•••	－	－．．•	－
Para－Toluene Sulfonic Acid	－0．0	－•••	－0．0	－	－	－	－	$\bigcirc \bullet \bullet$	－．．．	－0．•	－•••	－•••	－0．	－•••	－	－•••	－•••
Parafins	$\bullet \bullet \bullet$	－0．0	$\bullet \bullet \bullet$	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－00•	－	－＊＊	－＊＊	－＊＊＊	$\bullet \bullet \bullet$	－	－	$000 \cdot$	－
Paraldehyde	－	－•••	－00•	－00•	－0．	$000 \cdot$	${ }^{\circ}$－	－	－	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－	－	－	$\bullet \bullet \bullet$	－0••
Parker 0－Lube	$\bullet \bullet \bullet$	${ }^{\circ} \bullet$	－	－	－	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－	${ }^{\circ}$－	${ }^{\circ}$－\bullet

								$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { ज̄ } \\ & \text { 号 } \\ & \vec{\rightharpoonup} \end{aligned}$								
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Parker Super 0－Lube	$\bullet \bullet \bullet$	－•••	－$\cdot \bullet$	－	－	－	－	－＊•	－＊••	－	－	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－•••
Peanut oil	$\bullet \bullet \bullet$	－0．•	－＊••	$\bullet \bullet \bullet$	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc 00 \cdot$	－•••	${ }^{\circ} 0 \cdot$	－•••	－0••	${ }^{\circ}$－				
Pectin（Liquor）	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	－	－	－	－	－	$\bullet \bullet \bullet$	－＊••	－	－	－0．•	$\bullet \bullet \bullet$	$000 \cdot$	－	－	－
Pelargonic Acid	$\bullet \bullet \bullet$	－	－＊•	－•••	－•••	－＊••	$\bullet \bullet \bullet$	－	－	－	－•••	－	－	－	－	$\bullet \bullet \bullet$	－0．＾
Penicillin（Liquid）	－	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－	－	－
Pentachloroethane	$\bigcirc \bigcirc \bigcirc$	－0．	－•••	－•••	－．．．	－＊．•	－•••	－	－	－	－•••	－0．	－	－	．	$\bigcirc 0 \cdot$－	${ }^{\circ} 0 \cdot$
Pentachlorophenol	$\bigcirc 0 \cdot \bullet$	－0••	－＊••	$\bullet \bullet \bullet$	－•••	－＊••	－．．•	－	－＊••	－0••	－•••	－00•		－00•	－	$\bullet \bullet \bullet$	－00•
Pentaerythritol	$\bullet \bullet \bullet$	－．．．	－．．•	－	－	－	．	－	－	－०．•	－＊．＊	－	－	－	－•••	－	－
Pentaerythritol Tetranitrate	－0．•	－．．．	－0．0	－	－	－	．	－＊•	－．．॰	－०••	－•••	－•••	$\bigcirc 0 \cdot$－	－•••	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
n－Pentane	－•••	$\bigcirc 00 \cdot$	－•••	－	－•••	－	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot \bullet$	－0．•	－	－＊．＊	－•••	$\bigcirc 0 \cdot$	－0．•	－	$\bigcirc 0 \cdot$	－००
Pentane， 2 Methyl	－•••	$\bigcirc 00 \bullet$	－	－	－	－	－	$\bigcirc 0 \cdot$－	$\bigcirc 0 \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－	－＊••	－0．	－0．	－	${ }^{\circ} 0 \cdot$	－00•
Pentane，2－4 Dimethyl	－•••	$\bigcirc 00$－	－•••	－	－	－	．	－0．	－0．•	－．．．	－•••	－00•	－00•	－•••	－	－0．•	－00•
Pentane， 3 Methyl	－•••	$\bigcirc 0$－	－	－	－	－	－	$\bigcirc 0 \cdot$－	$\bigcirc \bigcirc \bullet$	－•••	－	－＊••	－0．	－0．	－	$\bigcirc 0 \cdot$－	$\bigcirc \bigcirc$
Peracetic Acid	．	－	－	－	－	－	－	－	－	－०••	－•••		－	－	－	－	－
Perchloric Acid	－00•	－＊••	－•••	－•••	－•••	－•••	－．．•	－0．	－．．．	－00•	－•••	－＊••	－00•	－00•	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－00•
Perchloroethylene	$\bigcirc \bullet \bullet$	$\bigcirc 0$.	－．．．	－．．．	－．．．	－•••	－．．．	－0．	－．．．	－．．．	－•••	－0．	－0．0	$\bigcirc 00 \cdot$	－0．	－0．	－00•
Petrolatum	－•••	－0．	－．．．	－．．．	－•••	－•••	$\bullet \bullet$.	$\bigcirc 00 \cdot$	－．．．	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$000 \cdot$	－	${ }^{\circ} \bullet \bullet$	－00•
Petrolatum Ether	－•••		－$\cdot \bullet$		－	－	－	－．．．	－＊••	$\bullet \bullet \bullet \bullet$	－．．．	${ }^{\circ} \bullet \bullet$	－•••	$\bigcirc \bullet \bullet$	－	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$
Petroleum＜120 ${ }^{\circ} \mathrm{C}$	$\bullet \bullet \bullet$	$\bigcirc 00 \bullet$	－．．．	－	－＊＊	－	$\stackrel{\bullet \bullet}{ }$	$\stackrel{\bullet \bullet}{ }$	－．．．	－•••	－•••	$\bigcirc 00 \cdot$	$\bullet \bullet \bullet$	－00•	－•••	$\bigcirc 0 \cdot$－	－00•
Petroleum $>120^{\circ} \mathrm{C}$	$\bigcirc 00 \bullet$	－0．•	－．．．	－	－听	－	－－．．	$\bigcirc 0 \cdot \bullet$	$\bigcirc 00 \cdot$	－0．\bullet	－．．．	$\bigcirc 0 \cdot$－	－0．\bullet	$\bigcirc 0 \cdot$	－＊．．	$\bigcirc 0 \cdot$	－ $0 \cdot$
Petroleum Crude	$\bullet \bullet \bullet$		－＊．	－•••	－•••	－＊＊	－．．•	$\bigcirc 0 \cdot$	－•••	－•••	－•••	${ }^{\bullet \bullet \bullet}$	$\bullet \bullet \bullet$	－0．	－•••	－0．	${ }^{\circ}$－\bullet
Phenol（Carbolic Acid）		$\bigcirc 00$－	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	－＊•	－0．•	－•••	${ }^{\circ} \bullet \bullet$	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet$	${ }^{\bullet \bullet}$	${ }^{\circ}$－
Phenol，70\％／30\％／H2O	$\bigcirc 00 \bullet$		－•••	－	－	－	－	${ }^{\circ} 0 \cdot 0$	$\stackrel{\bullet \bullet \bullet}{ }$	${ }^{\circ} \stackrel{0}{ }$	$\bullet \bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$	－	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$
Phenol，85\％／15\％／H2O	$\bigcirc \bigcirc \bigcirc$	$\bigcirc 0 \cdot \bullet$	－．．．	－	－	－	－	－0．－	－．．•	$\bigcirc 0 \bullet$	－．．．	－00•	－00•	$\bigcirc 00 \cdot$	－	$\bigcirc 0 \cdot \bullet$	－0．•
Phenolic Sulfonate	$\bigcirc \bullet \bullet$	－•••	－0．0	－	－	－	－	$\stackrel{\bullet \bullet}{ }$	－＊＊	－0••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－0．	－•••	－	$\bullet \bullet \bullet$	－•••
Phenosulfonic Acid	$\bigcirc 0 \cdot \bullet$	－	－•••	－•••	－•••	－•••	$\bullet \bullet \bullet \bullet$	－	－	${ }^{\circ \bullet \bullet}$	－$\bullet \bullet$	－	－	－	－	－0••	－
Phenyl Acetamide	－	－	－	－	－	－	－	－	－	－	－＊＊＊	－	－	－	－	－	\cdot
Phenyl Acetate	${ }^{\circ} \stackrel{\bullet}{ }$	－＊•	${ }^{\circ} 0 \bullet$	${ }^{\circ} 0 \cdot$	${ }^{\circ} \stackrel{0}{ }$	${ }^{\circ} 0 \cdot$	${ }^{\circ} \stackrel{0}{ }$	${ }^{\circ} 0 \cdot$	－＊••	－0••	$\bullet \bullet \bullet$	${ }^{\circ} \stackrel{0}{ }$	${ }^{\circ} 0 \cdot$	－00•	－	$\bullet \bullet \bullet$	－०••

								$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { ت } \end{aligned}$				$\begin{aligned} & \text { 岂 } \\ & \text { 落 } \\ & \text { 응 } \\ & \text { 론 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Phenyl Benzene	$\bigcirc 0 \cdot$		－•••	－•••	－•••	－•••	－•••		－＊••	－00•	－•••	${ }^{\circ} 0 \bullet$	－00•	$\bigcirc 00$－	$\bigcirc \bigcirc \bullet$	${ }^{\circ} 0 \bullet$	－ $0 \cdot$
Phenyl Ethyl Ether	$\bigcirc 00 \cdot$	${ }^{\circ}$－	${ }^{\circ} 0 \cdot$	$\bigcirc 00$－	－00•	－00•	－00•	－00•	－0．	－00•	－•••	－00•	－00•	－00•	$\bigcirc 0 \cdot$－	－0．•	${ }^{\circ}$
Phenyl Hydrazine	$\bigcirc 0 \cdot$	$\bigcirc \cdots \bullet$	－०••	－०••	－०••	$\bigcirc \bigcirc \bullet$	$\bigcirc \bigcirc \bullet$	－00•	－		－．．．	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot \bullet$	－＊••	－•••	$\bigcirc 0 \cdot$－	－•••
Phenyl Mercuric Acetate	－	－	－0．•	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	$\bigcirc 00 \cdot$	$\bigcirc 00 \bullet$	－	－	－०••	－．．．•	－	－	－	－	－	－
Phenylethyl Alcohol	－	－	－•••	－	－	－	－	－	－＊••	－	－•••	$000 \cdot$	－0••	$\bigcirc 00 \cdot$	－	－00•	${ }^{\circ} 0 \cdot$
Phenyl hydrazine Hydrachloride		－．．．	－0．•	－	－	－	－	－•••	－＊．•	－0••	－．．．	－•••	$\bigcirc 0 \cdot \bullet$	－•••	－	－•••	－•••
Phorone	$\bigcirc 0 \cdot$－	－＊．•	－00•		－00•	－00•	－00•	－00•	－00•	－0．•	－．．•	$00 \cdot$	－00•	$\bigcirc 0 \cdot$－		$\bigcirc \bullet \bullet$	${ }^{\circ} 0 \cdot$
Phosgene	$\bigcirc 0 \cdot$	－．．．•	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \bullet$	－	－	－	－．．．•	$\bigcirc 0 \bullet$	－	－	－	－	－
Phosphoric Acid 20\％	$\bigcirc 0 \cdot$	－．．．	－．．．	－．．．	－．．•	－•••	－•••	－०••	－＊•	－००	－．．．	－0．•	－0••	－＊．•	－•••	$\bullet \bullet \bullet$	－•••
Phosphoric Acid 60\％		－．．．	－．．．	－．．．	－．．．	－•••	－•••	－	－0．•	－	－	$\bigcirc \bullet \bullet$	－०••	－＊．•	－	$\bigcirc \bullet \bullet$	－००॰
Phosphoric Acid 80\％	$\bigcirc 0 \cdot$－	－＊．•	－＊••	－＊．•	－•••	－•••	－•••	－00•	－0．•	－	－•••	$\bigcirc 0 \bullet$	－	－＊••	－•••	$\bigcirc \bullet \bullet$	－0••
Phosphorous Trichloride	－0．	－．．．	－．．．	－．．．	－．．．	－•••	－•••	－	－．．．	－००	－．．．	－0．	－	－0．	－•••	－•••	\bigcirc
Phosphorous Trichloride Acid	－0．	－．．．	．	－	－	－	－	－	－．．．	－००－	－．．．	－	－	－	$\bullet \bullet \bullet$	－	－
Phthalic Acid	$\bigcirc \bigcirc \bullet$	－．．•	－＊••	－＊•	－•••	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－＊＊	－	－0．•	－．．．	－0．0	－	－	－	－	－
Phthalic Anhydride	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bigcirc 00 \cdot$	$\bigcirc 00 \cdot$	－00•	－00•	－00•	－	－	－०••	－•••	－•••	－•••	－	－०．॰	－	－0••
Pickling Solution	$\bigcirc 0 \bullet$	－0••	－$\cdot \bullet$		－$\cdot \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－00•	－0．	－00•	－$\cdot \bullet$	－0．	－00•	－00•	－＊•	$\bigcirc \bullet \bullet$	－00•
Picric Acid	－00•		－．．．	－．．•	－．．．	－•••	－•••	－00•	－＊．	－•••	－．．．		$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	－	－0••	${ }^{\circ} \mathrm{O}$ •
Pine oil	$\bigcirc \bullet \bullet$	$\bigcirc 00 \cdot$	－．．•	－．．．	－．．．	－•••	－•••	$\bigcirc 0 \cdot$	－．．．	－•••	－．．．	$\bigcirc 00 \cdot$	－•••	－0．	－•••	－0．\bullet	－0．•
Pine Tar	－	－	－．．．	－．．．	－．．．	－•••	－•••	－	－	－•••	－•••	－	－	－	－	－	－
Pinene	$\bigcirc \bullet \bullet$	${ }^{\circ} \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$		$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－00•	$\bullet \bullet \bullet \bullet$	－＊••	－．．．		$\bullet \bullet \bullet$		$\bullet \bullet \bullet$	$\bigcirc 00 \bullet$	－0．•
Piperidine	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	$\bigcirc 00$－	－0．	－0．0	－0．•	$\bigcirc 0 \cdot$	－0．•	－．．．	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$	－	${ }^{\circ} 0 \cdot$	－0．•
Plating Solution，Chrome		$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	－＊＊	－•••	－•••	${ }^{\circ} \bullet$	$\stackrel{\bullet \bullet}{ }$	－00•	－$\cdot \bullet$	－0．•	－00•	${ }^{\circ} \bullet \bullet$	－•••	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$
Plating Solution，Others	－•••	－＊＊•	－•••	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} 00$	－	$\bullet \bullet \bullet \bullet$	－•••	－•••	－	－＊＊•	$\bullet \bullet \bullet$	－•••	－•••
Poatassium Cupro Cyanide	－•••	－．．．	－	－	－	－	－	－•••	－．．．	－•••	－．．．	－•••	－•••	－．．．	－	－•••	－•••
Polyethylene Glycol	－•••	－＊．	－•••	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－＊॰．	－．．•	－＊•	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••
Polyglycerol	－	－	－	－	－	－	－	－	－	－0．•	－•••	－	－	－	－	－	－
Polyglycol	－•••	－•••	－	－	－	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	－	$\bullet \bullet \bullet$	－	－	－	－	－
Polyvinyl Acetate Emulsion	－•••	－＊．•	－०．॰	－	－	－	－	－00•	－	－	$\bullet \bullet \bullet$	－•••	－	\bullet	－•••	－•••	－

								$\begin{aligned} & \text { 岂 } \\ & \text { OU } \\ & \text { ज } \end{aligned}$				$\begin{aligned} & \text { 岂 } \\ & \text { 营 } \\ & \text { 음 } \\ & \text { 롱 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Potassium Acetate	－＊••	－＊＊	$\bigcirc \bigcirc$	－	$\bigcirc \bigcirc \bullet$	－	$\bigcirc 00$	－00•	$\bigcirc 0 \cdot$	－＊••	－•••	－＊••	$\bigcirc 0 \cdot$－	$\bigcirc \bigcirc \bullet$	－•••	－•••	－•••
Potassium Acid Sulfate	－0••	－•••	－0．•	－	－	－	－	$\bullet \bullet \bullet$	－．．＊	－0．॰	－＊．•	$\bullet \bullet \bullet$	－00•	$\bullet \bullet \bullet$	－	－•••	－$\bullet \bullet$
Potassium Alum	－0••	－•••	$\bigcirc 0 \bullet \bullet$	－	－	－	－	$\bullet \bullet \bullet$	－＊•	$\bigcirc 0 \cdot \bullet$	－＊•	$\bullet \bullet \bullet$	$\bigcirc 00 \bullet$	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Potassium Aluminum Sulfate	$\bullet \bullet \bullet$	－•••	－	－	－	－	－	－•••	－	－＊••	－	$\bigcirc \bullet \bullet$	－	$\bigcirc \bullet \bullet$	－	$\bullet \bullet \bullet$	－$\bullet \bullet$
Potassium Antimonate	－0．0	－•••	$\bigcirc 0 \cdot \bullet$	－	－	－	－	－•••	－．．＊	－0．0	－．．•	－•••	－00•	－•••	－	－•••	－•••
Potassium Bicarbonate	－•••	－•••	－．．．	－．．．	－＊．	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－．．．	－．．．	－0．0	－．．．	－•••	－	－•••	－	－•••	－．．．
Potassium Bichromate	－•••	－•••	－	－	－	－	－	－•••	－＊．•	－．．•	－	－00•	$\bigcirc \bullet \bullet$	－•••	－	－•••	－
Potassium Bifluoride	－0．•	－＊••	－0．•	－	－	－	－	－••	－．．．	－0．•	－•••	－•••	－0．0	－•••	－	－•••	－•••
Potassium Bisulfate	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \cdot \bullet$	$\bullet \bullet \bullet \bullet$	－	－	－•••	－$\cdot \bullet$	$\bullet \bullet \cdot \bullet$	－	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Potassium Bisulfite	－•••	－•••	－．．॰	－．．．	－．．．	－•••	－•••	－	－	$\bigcirc \bigcirc \bullet$	－．．•	－•••	$\bullet \bullet \bullet$	－•••	－	$\bullet \bullet \bullet$	－．．．
Potassium Bitartrate	－	－	－	－	－	－	－	－	－	－0．•	－．．．	－		－	－	－	－
Potassium Bromide	－•••	－•••	－•••	－．．．	－．．．	$\bigcirc \bullet \bullet$	－•••	$\bullet \bullet \bullet$	－．．．	$\bigcirc 0 \cdot \bullet$	－．．．	$\bigcirc \bullet \bullet$	－	－•••	－	－•••	－•••
Potassium Carbonate	－•••	－•••	－＊．＊	－．．．	－．．•	$\bigcirc \bullet \bullet$	－•••	－0．0	－．．•	－	－．．•	－＊•	－0．\bullet	－•••	－	－•••	－•••
Potassium Chlorate	－•••	－•••	－＊．＊	－．．．	－．．．	$\bigcirc \bullet \bullet$	－．．•	$\bigcirc \bullet \bullet$	－．．．	－	－．．．	－＊••	－•••	－•••	－	－＊．＊	－0．0．
Potassium Chloride	－•••	－•••	－•••	－．．．	－．．．		－•••	$\bullet \bullet$.	－•••	－•••	－．．．	－．．．	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－•••	$\bullet \bullet \bullet \bullet$
Potassium Chromate	－•••	－•••	－听	－．．•	－．．．	－＊•	－•••	－	－	－0．0	－．．．	－•••	－＊•	－＊•	－	－＊．＊	－＊．．
Potassium Citrate	－	．	－	－	．	－	－	－	－	－0．•	－．．．	－	－	－	－	－	－
Potassium Cupro Cyanide	$\bullet \bullet \bullet$	－•••	－．．•	－	－	－	－	$\bullet \bullet \bullet$	－．．．	－	－．．．	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Potassium Cyanate	－	－	－	－	－	－	－	－	－	－0．•	－．．．	－	－	－	－	－	－
Potassium Cyanide	－＊＊＊	$\bullet \bullet \bullet \bullet$	－＊＊	－＊＊•	－＊＊•	－•••	－$\bullet \bullet$	$\bullet \bullet . \bullet$	－＊＊	－．．．	－．．．	－0．	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－•••	－•••
Potassium Dichromate	－•••	－•••	－．．．	－．．．	－．．．	－•••	－•••	－．．•	－．．．	－．．．	－．．．	－•••	－＊•	－＊••	－•••	－•••	－＊．
Potassium Diphosphate	－0．0	－•••	－0．0	－	－	－	－	－＊•	－．．．	－0．॰	－．．．	－•．•	－0．0	$\bullet \bullet \bullet$	－	－•••	－$\bullet \bullet$
Potassium Ferricyanide	－＊••	－•••	－＊．＊	－．．．	－＊＊•	－＊••	$\bullet \bullet \bullet \bullet$	－	－	－0••	－＊••	－•••	－	$\bullet \bullet \bullet$	－	$\bigcirc \bullet \bullet$	－＊＊＊
Potassium Fluoride	－＊＊	$\bullet \bullet \bullet$	－＊＊	－•••	－${ }^{\circ}$	－•••	$\bullet \bullet \bullet$	－	－		－${ }^{\circ}$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－＊＊
Potassium Glucocyanate	－	－	－	－	－	－	－	－	－	－0．•	－．．．	－	－	－	－	－	－
Potassium Hydroxide	－＊••	－•••	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot$－	$\bigcirc 00 \cdot$	－00•	－00•	$\bigcirc 0 \cdot \bullet$	－0．0	－．．．	－．．．	－00•	－00•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊••
Potassium Hypochlorite	－＊＊	－•••	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$－	－00•	$\bigcirc 00 \cdot$	－	－	－0．•	－	－0••	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－	$\bigcirc \bullet \bullet$	－0••
Potassium lodate	－	－	－	－	－	－	－	－	－	－0••	$\bullet \bullet \bullet$	－	－	－	－	－	－

								$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { ت } \end{aligned}$				岂 品 응 온					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Potassium lodide	－•••	－•••	－•••	－•••	－•••	$\bullet \bullet \bullet$	－•••	－	－	－0••	－•••	－•••	－	－•••	－	－＊••	－＊••
Potassium Metabisulfate	－0••	－．．．	－0．๑	－	－	－	－	－＊••	－＊．•	－0．๑	－•••	－＊．•	$\bigcirc 0 \cdot$	－•••	－	－＊＊＊	－•••
Potassium Metachromate	－0••	－•••	$\bigcirc 0 \bullet \bullet$	－	－	－	－	－＊＊	－＊．•	－0．•	－＊••	－•••	$000 \cdot$	$\bullet \bullet \bullet$	－	－•••	－•••
Potassium Nitrate	$\bullet \bullet \cdot \bullet$	－＊．•	－•••	－＊．•	－＊．•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－＊．•	－＊．•	－＊．•	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－$\cdot \bullet$	－$\cdot \bullet$
Potassium Perchlorate	$\bigcirc \bullet \bullet$	－	－•••	－＊．•	－＊．•	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	$\bigcirc 0 \cdot \bullet$	－＊••	$\bigcirc 0 \cdot \bullet$	－	$\bigcirc \bullet \bullet$	－	－＊••	－＊．＊
Potassium Permanganate	－0．•	－•••	－＊．＊	－听	－．．．	$\bigcirc \bullet \bullet$	－•••	－	－	$\bigcirc \bigcirc \bullet$	－．．．	－•••	－＊••	－•••	－	－．．•	－．．．
Potassium Persulfate	$\bullet \bullet \bullet$	－＊．•	－	－	－	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－＊．•	$\bigcirc \bigcirc \bullet$	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	－	$\bigcirc \bullet \bullet$	－＊．＊
Potassium Phosphate（Di／Tri Basic）	－•••	－•••	－	－	－	－	－	－•••	－＊．•	－०．•	－＊．•	－＊＊	－	－•••	－	－＊＊	－＊．•
Potassium Phosphate，Acid	$\bigcirc 0 \cdot \bullet$	－．．．	－0．•	－	－	－	－	－＊．•	－＊••		－．．．	－•••	$\bigcirc 0 \cdot$	－•••	－	－•••	$\bullet \bullet \bullet \bullet$
Potassium Phosphate，Alkaline	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－	－．．．	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－．．．	－•••	－0．•	－•••	－	－＊．•	$\bullet \bullet \bullet$
Potassium Pyrosulfate	－	－	－	－	－	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－•••	－	－	－	－	－	－
Potassium Salts	－•••	－•••	－	－	－	．	－	－•••	－．．．	－•••	－	－＊．•	－＊．•	$\bullet \bullet \bullet$	－	－＊．•	$\bullet \bullet \bullet \bullet$
Potassium Silicate	－•••	－．．．	－．．•	－•••	－•••	$\bullet \bullet$.	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－．．．	－	－．．．	－•••	－•••	－•••	－	－•••	－•••
Potassium Sodium Tartrate	－	．	－	－	－	．	－	．	－	－0．॰	－．．•	．	－	－	－	－	－
Potassium Stannate	－	．	－	－	－	．	－	－	－	－0．•	－．．．	－	－	－	－	－	－
Potassium Stearate	－	－	－．．．	－．．．	－．．．	－．．．	－•••	－	－	－0．•	－．．．	－	－	－	－	－	－
Potassium Sulfate	－•••	－•••	－．．．	－．．．	－•••	－•••	－•••	－•••	－•••	－•••	－．．•	－•••	－•••	$\bullet \bullet$.	－•••	－•••	－．．．
Potassium Sulfide	－•••	－．．．	－．．•	－．．．	－．．．	－•••	－•••	－•••	－	－0．•	－．．．	－•••	－＊．•	－•••	－	－＊．•	－．．．
Potassium Sulfite	－•••	－．．．	－．．•	－•••	－．．．	－•••	－•••	$\bullet \bullet \bullet$	－•••	－•••	－．．•	－＊＊	－•••	－＊•	－	－•••	－．．．
Potassium Tartrate	－	－	－	－	－	－	－	－	－	－०．॰	－．．．	－	－	－	－	－	－
Potassium Thiocyanate	－	－	－	－	－	－	－	－	－	－०．॰	－•••	－	－	－	－	－	－
Potassium Triphosphate	$\bullet \bullet \bullet$	－•••	－	－	－	－	－	－•••	－．．．	$\bigcirc \bullet \bullet$	－	－•••	${ }^{\circ} 0$	$\bullet \bullet \bullet$	－	－＊＊	－＊••
Prestone Antifreeze	－•••	－•••	－•••	－•••	－•••	$\bullet \bullet \bullet$	－•••	－•••	－．．•	－•••	－•••	$\bigcirc 0 \cdot \bullet$	$\bigcirc 00 \cdot$	－•••	－＊•	－•••	－•••
PRL－High Temp Hydraulic Oil	－＊••	－0．	－．．．	－•••	－${ }^{\bullet \bullet}$	$\bullet \bullet \bullet$	－•••	－＊＊	－＊＊	${ }^{\circ} \bullet \bullet$	－＊＊	－＊••	－＊＊	－0．•	－＊••	${ }^{\circ} 0 \cdot 0$	－00•
Producer Gas	$\bullet \bullet \bullet$	${ }^{\circ} \stackrel{0}{ }$	－＊＊•	－＊••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\stackrel{\bullet \bullet}{ }$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－0．\bullet	－＊••		－00•
Propane	－•••	－0．	－．．．	－．．．	－．．．	－$\bullet \bullet$	－•••	－00•	－禹	－•••	－•••	－0．•	－0．0	${ }^{\circ} 0 \cdot 0$	－．．．	${ }^{\circ} 0 \cdot 0$	－00•
Propionaldehyde	－0．	－•••	$\bigcirc 00 \cdot$	$\bigcirc 00 \cdot$	－00•	$\bigcirc 00 \cdot$	$000 \cdot$	－00•	$\bigcirc 0 \cdot$－	－0．\bullet	－．．．	$\bigcirc 00 \cdot$	$000 \cdot$	－00•	－	$\bullet \bullet \bullet \bullet$	－
Propionic Acid	－0••	－．．．	$\bigcirc \bullet \bullet$	－	－	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－०••	－•••	－•••	$\bigcirc 0 \cdot$－	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$

								$\begin{aligned} & \text { 岂 } \\ & \text { O} \\ & \text { ज } \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { ज̄ } \\ & \text { 号 } \\ & \vec{\rightharpoonup} \end{aligned}$			$\begin{aligned} & \text { 岂 } \\ & \text { 落 } \\ & \text { 음 } \\ & \text { 론 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Propionitrile	$\bigcirc 0 \cdot$	－＊＊＊	－00		$\bigcirc 0 \bullet$	$\bigcirc 00 \cdot$	$\bigcirc 0 \bullet$	－	－	－•••	－	－＊••	－	－	－•••	－•••	－＊••
n－Propyl Acetate	－0．	－＊••	－0．•	－	－0．	－	$\bigcirc 0 \cdot$－	－0．•	－0．	$\bigcirc 0 \cdot$－	－＊••	－0．•	－0．	－0．•	－00•	$\bigcirc \bullet \bullet$	－००॰
Propyl Acetate	$\bigcirc 00 \cdot$	－＊．•		－	$\bigcirc 0 \cdot$－	－	$\bigcirc 00 \cdot$	－0．	$\bigcirc 0 \cdot$	$\bigcirc 00$－	－＊＊	－0．•	$\bigcirc 0 \cdot$	－00•	$\bigcirc \bigcirc$	－＊••	－0．＾
Propyl Acetone	$\bigcirc 00 \cdot$	－．．．	－00•	－0••	－＊．．	－0．•	－＊．•	－00•	－0．•	－00•	－＊．．	－00•	－00•	－00•	－	－•••	－00•
n－Propyl Acetone	－0．	－．．．	$\bigcirc 0 \cdot$－	－0．•	－＊．＊	－0．0	－＊．•	－0．	－0．\bullet	$\bigcirc 00$－	－•••	－00•	－0．	－00•	－	－•••	－0．＾
Propyl Alcohol（Propanol）	$\bullet \bullet \bullet$	－．．．	－．．．	－．．．	－．．．	$\bullet \bullet \cdot \bullet$	－＊．•	$\bullet \bullet \cdot$	－．．•	－．．．	－＊．＊	$\bullet \bullet \bullet$	－0．	$\bullet \bullet \bullet$	－•••	－•••	－＊••
Propyl Amine	$\bigcirc 0 \cdot$－	－•••	－	－	．	．	．	－0．•	$\bigcirc 00 \cdot$	－0．•	－．．．	－0．0	－0．\bullet	－0．0	．	－	－
Propyl Benzene	－	－	－$\bullet \bullet$	－	－	－	－	－	－＊•	．	－•••	－00•	$\bigcirc 0 \cdot$－	$\bigcirc 0 \bullet$－	－	$\bigcirc 0 \cdot$－	${ }^{\circ}$－\bullet
Propyl Cyanide	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet \bullet$	－	－	－	－	－	－	－	－	－	－00•	－	－	－	$\bullet \bullet \bullet$	－0．•
Propyl Nitrate	$\bigcirc 0 \cdot$	－．．．	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$－	－0．•		－००－	－0．	$\bigcirc 0$.	－•••	－००॰	－0．•	－००•	－	－．．•	－००॰
Propy Propionate	－0．•	－•••	－0．•	－	－	．	．	－•••	－•••	－0．•	－•••	－•••	${ }^{\circ} 0 \cdot$	－•••	－	－•••	－•••
Propylene	$\bigcirc 0 \cdot$	－0．	－•••	－•••	－•••	－•••	－•••	$\bigcirc 0 \cdot$－	－＊．．	－0．•	－．．．	－00•	－00•	$\bigcirc \bigcirc \bigcirc$	$\bullet \bullet \bullet$	${ }^{\circ} \stackrel{\bullet}{ }$	${ }^{\circ}$－
Propylene Chloride	$\bigcirc 00 \cdot$	－00•	－	－	－	－	－	－	－	－	－	－00•	－	－	－		${ }^{\circ} 0 \bullet$
Propylene Chlorohydrin	－	－	－	－	－	－	－	－	－	－	－＊＊＊	－	－	－	－	－	－
Propylene Dichloride	－0．	$\bigcirc 0$.	－＊••	－．．．	－．．．	－＊••	－•••	－0．－	－＊．•	－	－•••	－00．	$\bigcirc 00 \cdot$	－00•	－	${ }^{\circ} 0 \cdot$	${ }^{\circ}$－
Propylene Glycol	$\bullet \bullet \bullet$	－．．．	－．．．	－•••	－．．．	－•••	－．．•	$\bullet \bullet$.	－．．．	－0．•	－•••	－0．•	－＊•	$\bullet \bullet \bullet$	－•••	－0••	－•••
Propylene Imine	－	－	－	－	－	－	－	－	－	－	－•••	－	－	－	－	－	－
Propylene Oxide	$\bigcirc 0 \cdot$	－．．．	－0．0	－0．0	$\bigcirc 00 \cdot$	${ }^{\circ} 0 \cdot 0$	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$	－00•	－＊＊＊	${ }^{\circ} 0 \cdot$	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot \bullet$		$\bullet \bullet \bullet$	－00•
Pydraul 115E	$\bigcirc 00 \cdot$	－．．．	－．．•	－．．．	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	$\bigcirc \bullet \bullet$	${ }^{\circ} \stackrel{\bullet}{ }$	$\bullet \bullet \bullet$	${ }^{\circ} \stackrel{\bullet}{ }$	${ }^{\circ} 0 \cdot$	${ }^{\circ} \bullet \bullet$	－•••	$\stackrel{\bullet \bullet}{ }$	${ }^{\circ}$－
Pydraul 230C，312C， 5400	$\bigcirc 0 \cdot$	$\bigcirc 0$.	－•••	－•••	－•••	－•••	－．．．	${ }^{\circ} 0 \cdot 0$	${ }^{\circ} 0 \cdot$	${ }^{\circ}$－	－＊．．	－0，•	${ }^{\circ} 0 \cdot$		$\bullet \bullet \bullet$		${ }^{\circ}$－
Pydraul 29ELT，30E／50E，65E	$\bigcirc 00 \cdot$	－＊••	－	－	－	－	－	$\bullet \bullet \bullet \bullet$	－＊＊	$\bigcirc 00$－	－	－00•	${ }^{\circ} \stackrel{0}{ }$	－00•	－	${ }^{\bullet \bullet} \cdot$	${ }^{\circ}$－
Pydraul 90e	$\bigcirc 00 \cdot$	－＊．	－	－	－	－	－	$\bullet \bullet \bullet$	－$\cdot \bullet$	${ }^{\circ} \bullet \bullet$	－	－00•	$\bigcirc 0 \cdot$－		－	$\bullet \bullet \bullet$	${ }^{\circ}$－
Pyranol（Transformer oil）	$\bullet \bullet \bullet$		－•••	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－•••	－•••	$\bullet \bullet \bullet \bullet$	－＊••	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	$\bullet \bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	${ }^{\circ}$－
Pyridine	－0．	－．．．	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	$\bigcirc 0$.	$\bigcirc 0 . \bullet$	$\bigcirc 0$.	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \bullet$	${ }^{\circ} 0 \cdot$	${ }^{\circ}$－\bullet	－＊＊＊	${ }^{\bullet \bullet}$	${ }^{\circ}$－
Pyridine 0il	$\bigcirc 00$－	－＊••	－	－	－	－	－	${ }^{\circ} 0 \cdot 0$	${ }^{\circ} \bullet$	${ }^{\circ} 0 \cdot$	－	－00•	－	$\bigcirc 00 \bullet$	－	－＊•	－00•
Pyrogallol（Pyrogallic Acid）	－	－．．．	－	－	－	－	－	－	－	－＊••	－	－	－	－	－	－	－
Pyrogard 42，43，53， 55	${ }^{\circ} 0 \cdot 0$	－．．．	－＊＊	－•••	－•••	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	$\bigcirc 00 \cdot$	－00•	$\bullet \bullet \bullet \bullet$	－00•	$000 \cdot$	－00•	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$
Pyrogard C\＆D	$\bullet \bullet \bullet$	${ }^{\circ} \stackrel{\text { • }}{ }$	－•••	－•••	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$		${ }^{\bullet \bullet} \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊＊	${ }^{\circ} 0 \cdot$	${ }^{\circ}$－\bullet	$\bullet \bullet \bullet$	${ }^{\circ} \stackrel{\bullet}{ }$	${ }^{\circ}$－\bullet

								$\begin{aligned} & \text { 山 } \\ & \text { U } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { ज̄ } \\ & \text { 号 } \\ & \vec{\rightharpoonup} \end{aligned}$								
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Pyroligneous Acid	－0．•	－•••	－0．•	$\bigcirc 0 \cdot$－	－00•	${ }^{\circ} 0 \cdot 0$	$\bigcirc 00 \cdot$	－•••		－00•	－•••	－0．	－00•	－00•	－00•	－•••	－0．•
Pyrolube	－00•	－•••	－•••	－•••	－＊．•	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－•••	－00•	－•••	$000 \cdot$		$000 \cdot$	－•••	－•••	－००॰
Pyrosulfuric Acid	$\bigcirc 0 \bullet \bullet$	－＊••	－0．•	－	－	－	－	$\bigcirc \bullet \bullet$	－•••	－0••	－•••	$\bullet \bullet \bullet$	$00 \cdot$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－•••
Pyrosulfuryl Chloride	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$－	－．．•	－	－	－	．	－	－＊．	－＊••	－•••	－00•	－0．•	－00•	－	－0．	－0．0
Pyrrole	－00•	${ }^{\circ}$－	－0．\bullet	－00•	－0．•	$\bigcirc 00 \cdot$	$\bigcirc 00 \cdot$	－＊••	$\bigcirc 0 \cdot$－		－•••	$\bigcirc 00 \cdot$	－	－0••	－	${ }^{\circ} 0 \cdot$	－०••
Pyruvic Acid	－	－	－	－	．	－	．	．	．	－०．७	－•••	－	－	．	－	－	－
Quinidine	－	－	－	－	－	－	－	－	－	－＊••	－	．	－	．	－	－	－
Quinine	－	－	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－	－	－
Quinine Bisulfate	$\bullet \bullet \bullet$	－．．．	－	－	－	－	－	－	－	－०••	－	－•••	$\bullet \bullet \bullet$	－	－	－	－
Quinine Hydrochloride	－0．•	－．．．	－•••	－	－	－	－	－•••	－•••	－०••	－•••	－•••	$\bigcirc 0 \cdot$	－•••	－	－•••	$\bullet \bullet \bullet$
Quinine Sulfate	$\bullet \bullet \bullet$	－．．．	－	－	－	－	－	－	－	－0．•	－	－•••	－•••	－	－	－	－
Quinine Tartrate	－	．	－	－	－	－	－	．	－	－0．•	－	－	－	－	－	－	－
Quinizarin	－	－	－．．•	－•••	－•••	－•••	－．．•	－	－	－＊．．	－•••	－	－	－	－	－	－
Quinoline	－	－	－．．．	－．．．	－．．．	－．．•	－．．•	－	－	－＊••	－•••	－	－	－	－	－	－
Quinone	－	－	－＊••	－＊．	－．．．	$\bigcirc \cdot \bullet$	－．．•	－	－	－＊．．	－•••	－	－	－	－	－	－
Radiation	－0••	－0．•	－0．0	－0．0	－0．0	－0．0	－0．0	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$	－0．•	－＊．＊	－0．•	－0．•	－0．•	－•••	$\bigcirc 0 \cdot$	－०••
Raffinate	－	－	－．．．	－．．•	－•••	$\bullet \bullet \bullet \bullet$	－．．•	－	－	－＊••	－•••	－	－	－	－	－	－
Rapeseed oil	－．．＊	－•••	－．．．	－．．．	－．．．	－．．．	－．．．	$\bigcirc 0 \cdot \bullet$	－．．•	－＊．．	－．．．	－＊•	－＊•	$\bigcirc 0 \cdot$－	－．．．	－•••	－0．•
Red Line 1000 oil	－•••	$\bigcirc 0 \cdot$	－•••	－•••	－．．•	－•••	－•••	${ }^{\circ} 0 \cdot$	－．．•	－•••	－•••	－＊••	－•••	－0．－	－．．．	${ }^{\circ} 0 \cdot$	－0．•
Red Oil（MIL－H－5606）	－．．．	$\bigcirc \bullet \bullet$	－．．．	－．．．	－．．．	－．．．	－．．．	$\bigcirc 0 \cdot$ •	－．．．	－．．．	－	－＊．	－．．．	$\bigcirc 0 \cdot$－	－＊．．	$\bigcirc 0 \cdot$－	－००－
Resins	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot \bullet$	－．．．		－	－		－	－	－	－•••	$\bigcirc 0 \cdot$		－	－	－	－
Resorcinol	$\bigcirc \bigcirc \bigcirc$	$\bigcirc 00 \cdot$	－．．．	－•••	－•••	－•••	$\bullet \bullet \bullet$	－	－	$\bigcirc 0 \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$－	－＊•	$\bullet \bullet \bullet$	－	－
Riboflavin	－	－	－•••	－•••	－＊＊	－•••	$\bullet \bullet \bullet \bullet$	－	－	$\stackrel{\bullet \bullet}{ }$	－•••	－	－	－	－	－	－
Ricinoleic Acid	－	－	－．．．	－．．．	－．．．	－．．．	－．．•	－	－	－•••	－．．．	－	－	－	－	－	－
RJ－1（MIL－F－25558）	－•••	$\bigcirc 0 \cdot$	－．．．	－．．．	－．．．	－•••	－．．•	${ }^{\circ} 0 \cdot 0$	－．．．	$\bullet \bullet \bullet$	－•••	－＊＊	－＊•	－00•	－•••	－0．	${ }^{\circ}$－
RJ－4（MIL－F－82522）	－．．．	$\bigcirc 0 \cdot$	－．．．	－．．．	－．．．	－．．．	－．．．	－0．	－．．．	－＊••	－．．．	－	－	－	－．．．	－	－
Rosin	－•••	$\bigcirc 0 \cdot \bullet$	－．．．	－•••	－．．．	$\bullet \bullet . \bullet$	－•••	$\bullet \bullet$.	－•••	$\bigcirc \bullet \bullet$	－•••	－•••	－00•	－••	－	－	－
RP－1（MIL－R－25576）	－•••	－0．	－•••	－	－	－	－	${ }^{\circ} 0 \cdot$	－．．．	－•••	－•••	－0．0	－0．•	－0．－	－•••	－0．	${ }^{\circ}$－

								$\begin{aligned} & \text { 岂 } \\ & \text { OU } \\ & \text { 位 } \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { O} \\ & \text { ה } \\ & \text { O} \\ & 0 \\ & \vec{y} \end{aligned}$			$\begin{aligned} & \text { 岂 } \\ & \text { 落 } \\ & \text { 음 } \\ & \text { 론 } \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { 去 } \\ & \text { W } \\ & \stackrel{y}{c} \\ & 0 \\ & 0 \end{aligned}$				
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Rust Inhibitors	－•••	－	－•••	－	－	－	－	－	－	－	－	००••	－＊＊	－	－	－	－•••
Saccharin Solution	－	－$\bullet \bullet$	－	－	－	－	－	－	－	－0．•	$\bullet \bullet \bullet \bullet$	－	－	－	－	－	－०．•
Sal Ammoniac	$\bullet \bullet \bullet$	－．．•	－＊••	－＊＊	－＊••	－•••	－•••	$\bigcirc \bullet \bullet$	－•••	－＊••	－•••	－＊＊	－＊••	－•••	－•••	－＊＊	－•••
Salicylic Acid	$\bigcirc \bullet \bullet$	－＊．•	－＊．•	－＊．•	－＊．•	－＊．•	$\bullet \bullet \cdot \bullet$	－	－＊．•	－＊••	－•••	$\bullet \bullet \bullet$	－	$\bigcirc \bullet \bullet$	－＊••	－＊．•	$\bullet \bullet \cdot \bullet$
Saltwater	$\bullet \bullet \cdot \bullet$	－$\cdot \bullet$	－$\cdot \bullet$	－•••		$\bullet \bullet \bullet$	$\bullet \bullet \cdot$	$\bullet \bullet \bullet$	－$\cdot \bullet$	$\bullet \bullet \bullet$	－•••	－＊•	$\bigcirc 0 \cdot$－	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet . \bullet$
Sanitizers	$\bullet \bullet \bullet$	－	－．．．	－	－	－	－	－	－	－	－	－	－	－	－	－	－
Santosafe 300	－00•	－0．•	－．．．	－．．．	－．．．	－•••	－•••	－•••	－•••	$\bigcirc 0 \cdot$－	－•••	－0．•	－0．	－0．	－•••	－0．•	－0．＾
Sebacic Acid	－	－	－．．．	－＊••	－．．．	－听	－•••	－	－	－0．•	－＊••	－	－	－	－	－	－
sec－Butyl Alcohol（SBA）	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－＊••	－$\cdot \bullet$	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \cdot \bullet$	$\stackrel{\bullet \bullet}{ }$	－•••	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	$\bigcirc 00 \cdot$	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Sewage	－•••	－．．．	－．．॰	－．．．	－．．．	－＊．•	$\bullet \bullet$.	$\bullet \bullet \bullet$	－．．．	－．．．	－•••	－＊．	$\bigcirc 0 \cdot$－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊••	－＊．•
SF 1147	－＊•	－0．•	－	－	－	－	－	$\bigcirc 00 \cdot$	－	－＊．＊	－	－	－	－	－	－0．•	－
SF 1153	－•••	－．．．	－	－	－	－	－		－．．．	－．．．	－	－•••	－．．＊	－•••	－•••	－．．•	－•••
SF1154	$\bigcirc \bullet \bullet$	－．．•	－	－	－	－	－	$\bigcirc 0 \cdot$－	－．．•	－＊••	－	－•••	－•••	－•••	－•••	－•••	－•••
SF96（GE Silicone Fluid）	－•••	－．．＊	－	－	－	－	－	$\bigcirc 00 \cdot$	－．．．	－＊．＊	－	－•••	－．．•	－	－	－．．•	$\bullet \bullet \bullet$
Shell 3XF Mine Fluid	－•••	$\bigcirc 00$	－	－	－	－	－	－	－．．．	－．．．	－	－．．．	$000 \cdot$	$\bigcirc 0 \cdot \bullet$	－	$\bigcirc 00 \cdot$	${ }^{\circ} \mathrm{O}$－
Shell Alvania Grease \＃2	$\bullet \bullet \bullet$	－0．	－	－	－	－	－	$\bullet \bullet \bullet$	－$\bullet \bullet$	－$\cdot \bullet$	－	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \bullet$
Shell Carnea 19 and 29	－•••	－00•	－	－	－	－	－	－	－．．．	－．．．	－	－00•	－＊．	$\bigcirc 0 \cdot \bullet$	－	－00•	－00•
Shell Diala	－•••	$\bigcirc 0 \cdot$－	－	－	－	－	－	$\bigcirc 0 \cdot$	－．．．	－．．．	－	－＊••	－＊．•	$\bigcirc \bigcirc$	－	$\bigcirc 0 \cdot$－	${ }^{\circ}$－
Shell Iris 905	－•••	$\bigcirc 0 \cdot$－	－	－	－	－	－	${ }^{\circ} \bullet \bullet$	－•••	－•••	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	－	${ }^{\circ} \stackrel{\bullet}{ }$	${ }^{\circ}$－
Shell Lo Hydra 5，27， 29	－•••	－0．	－	－	－	－	－	$\bigcirc 0 \cdot$－	－．．．	－．．．	－	－．．．	－＊．•		－	${ }^{\circ}$－	
Shell Macome 72	－•••		－	－	－	－	－	$\bigcirc 0 \cdot$	－＊••	－．．．	－	－＊••	－＊••		－	$\bigcirc \bigcirc$	${ }^{\circ}$－\bullet
Shell Tellus 27 （Petroleum Base）	－•••	$\bigcirc 0 \cdot$	－．．•	－．．．	－．．．	$\bullet \bullet$.	$\bullet \bullet$.	$\bigcirc 0 \cdot$－	－．．．	－．．．	－•••	－＊••	$\bullet \bullet \bullet$		$\bullet \bullet \bullet$	${ }^{\circ}$－	${ }^{\circ} \bullet \bullet$
Shell Tellus 32 （Petroleum Base）	－•••		－．．．	－	－	－	－	${ }^{\circ} \bullet \bullet$	－＊••	－•••	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet \bullet$		－0．	－	${ }^{\circ}$－
Shell Tellus 33	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	－＊＊	－•••	－．．．	$\bullet \bullet$.	$\bullet \bullet \cdot$	$\bigcirc 0 \cdot$－	－＊＊＊	－\bullet^{\bullet}	－	－＊．•	$\bullet \bullet \bullet$	$\bigcirc \bigcirc \bigcirc$	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	
Shell Tellus 68	－	－	－	－	－	－	－	－	－	－．．．	－	－	－	－	－	－	－
Shell UMF，5\％Aromatic	－•••	－0．	－．．•	－．．•	－．．•	$\bullet \bullet \bullet$	－•••	$\bigcirc 00 \cdot$	－．．•	－．．．	$\bullet \bullet \bullet \bullet$	－＊＊	$\bullet \bullet \bullet \bullet$	$000 \cdot$	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	－00•
Shellac	－•••	－•••	－＊．	－．．．	－．．．	－＊．＊	$\bullet \bullet . \bullet$	－	－	－0．0	－•••	－00•	$000 \cdot$	$\bullet \bullet \bullet$	－	－	${ }^{\circ} \bullet \bullet$
Silicate Esters	－＊•	$\bigcirc \bigcirc$	－•••	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	${ }^{\circ} \bullet$	$\bullet \bullet \bullet \bullet$	－＊••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$		$\bullet \bullet \bullet \bullet$	${ }^{\circ} \bullet$	${ }^{\circ}$ •

												$\begin{aligned} & \text { 岂 } \\ & \text { 营 } \\ & \text { 응 } \\ & \text { 롭 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Silicone Greases	－•••	－•••	－•••	－•••	－•••	－•••	－•••	－0．•	－•••	－•••	－•••	－•••	－•••	－•••	－•••	－•••	－•••
Silicone Oils	$\bullet \bullet \bullet$	－$\bullet \bullet$	－$\bullet \bullet$	$\bullet \bullet \bullet$	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－＊••	$\bullet \bullet \bullet$	－•••	－•••	－•••	－•••	－•••	－•••
Silver Acetate	－	－	－＊．•	－	－	－	－	－	－	－	－	－•••	－	－	－	－	－
Silver Bromide	－	－	－	－	－	－	－	－	－	－0．•	－．．．	－	－	－	－	－	－
Silver Chloride	－	－	－	－	－	－	－	－	－	$\bigcirc \bullet \bullet$	－•．．	－	－	－	－	－	－
Silver Cyanide	－•••	－．．．	－．．．	－．．．	－．．．	－．．•	－•••		－．．．	－0．•	－．．．	－•••	－00•	$\bigcirc 00 \cdot$	－	－	$\bullet \bullet \bullet \bullet$
Silver Nitrate	$\bigcirc \bullet \bullet$	－•••	－．．．	－．．．	－．．．	－•••	－．．．	$\bullet \bullet \bullet$	－．．．	－•••	－•••	－••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	－•••
Silver Sulfate	－•••	－．．•	－．．．	－．．．	－．．．	－．．•	－＊．•	－	－	－0．0	－．．．	－•••	．	－	－	－	－
Sinclair Opaline CX－EP Lube	－•••	－0．	－．．•	－．．．	－．．•	－•••	－•••	$\bigcirc 0 \cdot$－	－＊•	－．．．	－．．．	－••	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	－•••	$\bigcirc 0 \cdot$－	－00•
Skelly Solvent B，C，E	－•••	$\bigcirc 00 \bullet$	－	－	－	－	－	－	－．．．	－．．•			．	$\bigcirc \bigcirc \bullet$		－0．	－0．•
Skydrol 500 b4 LO－4	$\bigcirc 0 \cdot$－	－•••	$\bigcirc 00$－	－	－	－	－	－0．•	－0．0	$\bigcirc 00$－	－．．•	$\bigcirc 0 \cdot$－	－0．	$\bigcirc 0 \cdot$－	－．．．	－＊＊＊	－00•
Skydrol 7000		－．．．	－0．•	－＊•	－•••	－0．•	－＊••	－0．•	－0．•	$\bigcirc 0$－	－•••	－0．	－00•	－0．	－．．．	－•••	－००॰
Skydrol LD－4	$\bigcirc 0 \cdot$－	－•••	$\bigcirc 00$	－0．	$\bigcirc 00 \cdot$	－00•	－00•	－0．•	－0．•	$\bigcirc 00$－	－00•	－0．\bullet	－0．\bullet	－00•	－	－•••	－00•
Soap Solutions	－•••	－．．•	－．．．	－•••	－．．．	－•••	－•••	－•••	－．．．	－．．．	－．．•	－．．•	$\bigcirc 0 \bullet \bullet$	$\bullet \bullet \bullet$	－．．•	－＊．＊	－．．．
Socony Mobile Type A	－•••	－00•	－	－	－	－	－	－00•	－＊•	－．．•	－	－＊•	－＊•	－00•	－	$\bigcirc 00 \cdot$	－00•
Socony PD959b Vacuum	－•．•		－．．．	－•••	－•••	－•••	－•••	－0．	－．．．	－．．．	－．．•	－＊．	－•••	$\bigcirc 0 \cdot$	－．．•	－0．	－00•
Socony Vacuum AmV AC781	－•••	－0．•	－		－	－	－	${ }^{000}$	－＊•	－．．．	－	－•••	－••	$\bigcirc 00 \cdot$	－	－00•	－00•
Soda	－•••	－．．．	－．．．	－	－	－	－	－•••	－．．．	－．．．	－•••	－•••	－	－•••	－	－•••	－•••
Soda Alum	－•••	－．．•	－•••	－	－	－	－	－•••	－	－	－	－•••	－•••	－	－	－•••	－•••
Soda Ash	－．．．	－．．．	－．．．	－．．．	－．．．	－•••	－．．．	－．．．	－．．•	－．．．	－．．．	－．．．	－＊•	$\bullet \bullet \bullet$	－．．．	$\bullet \bullet \bullet \bullet$	－．．．
Sodium Acetate	－．．•	－•••	－．．．	－．．•	－．．．	－•••	－•••	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$	－••	－•••	－．．	－0．	－00•	－＊．	－•••	－•••
Sodium Acid Bisulfate	－0．•	－．．．	－0．0	－	－	－	－	－．．•	－．．．	－0．0	－．．．	－•••	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet \bullet$	－	$\bullet \bullet \bullet \bullet$	－${ }^{\circ} \bullet$
Sodium Acid Fluoride	－0．•	－•••	－0．•	－	－	－	－	－＊••	－．．•	－0．•	－．．•	－•••	－00•	－•••	－	－•••	－•••
Sodium Acid Sulfate	－0．•	－．．．	－0．0	－	－	－	－	－＊．•	－．．．	－0．0	－．．．	－•••	－00•	－．．．	－	－．．．	－．．．
Sodium Aluminate	$\bullet \bullet \bullet$	－•••	$\bigcirc \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	$\bigcirc \bigcirc \bullet$	－•••	$\bullet \bullet \bullet$	－	${ }^{\bullet \bullet \bullet}$	－	$\bullet \bullet \bullet \bullet$	－＊＊＊
Sodium Aluminate Sulfate	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－	－	$\bullet \bullet \bullet$	－	－0．•	－	－．．．	$\bullet \bullet \bullet$	${ }^{\circ} \bullet$	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Sodium Anthraquinone Disulfate	－	－	－	－	－	－	－	－	－	－0．•	－	－	－	－	－	－	－
Sodium Antimonate	－	－	－	－	－	－	－	－	－	－0••	－	－	－	－	－	－	－

								$\begin{aligned} & \text { 岂 } \\ & \text { OU } \\ & \text { ज } \end{aligned}$				岂 宮 응 돈					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Sodium Arsenate	－＊••	－	－•••	－•••	－•••	－＊••	－•••	－	－	○○•	－＊．•	$\bigcirc \bigcirc \bullet$	－	－＊••	－	－＊＊	－•••
Sodium Arsenite	－	－	．	－	－	－	－	－	－	－०••	－＊．•	－	－	－	－	－	－
Sodium Benzoate	$\bigcirc \bullet \bullet$	－＊••	$\bigcirc \bullet \bullet$	－•••	－＊••	－＊＊	$\bullet \bullet \bullet$	－	－	$\bigcirc \bullet \bullet$	－＊••	$\bullet \bullet \bullet \bullet$	－	－＊＊	－	－•••	$\bullet \bullet \bullet \bullet$
Sodium Bicarbonate	－•••	－．．．	－＊．•	－•••	－．．．	－＊．•	－•••	$\bullet \bullet \bullet$	－$\bullet \bullet$	$\bullet \bullet \bullet$	－．．•	－•••	$\bullet \bullet \bullet$	－＊．•	－•••	－＊．＊	－•••
Sodium Bichromate	－•••	－•••	－	－	－	－	－	－	－	－0••	－	$\bigcirc \bullet \bullet$	－	$\bigcirc \bullet \bullet$	－	－•••	${ }^{\circ} 00$
Sodium Bisulfate	－•••	－．．．	－．．•	－•••	－•••	－•••	－•••	－0．•	－．．•	－•••	－．．•	－．．．	－＊．•	－＊．．	－．．．	－．．．	$\bullet \bullet \bullet \bullet$
Sodium Bisulfite	$\bullet \bullet \bullet$	－•••	－＊＊•	－．．．	－．．．	－＊＊	－•••	$\bullet \bullet \bullet$	－＊＊	－•••	－．．．	－•••	－•••	${ }^{\circ} \cdot \bullet$	－．．．	－•••	－•••
Sodium Borate	－•••	－．．．	－．．•	－．．．	－．．．	－＊．•	－•••	－•••	－．．•	－•••	－．．•	－•••	－＊•	－＊．•	－．．．	－$\bullet \bullet$	－•••
Sodium Bromate	－	－	－	－	－	－	－	－	－	$\bigcirc \bullet \bullet$	－．．•	－	－	－	－	－	－
Sodium Bromide	－	－•••	－．．．	－．．．	－•••	－＊．•	－•••	－	－	$\bigcirc 0 \cdot \bullet$	－．．．	－＊．•	－	－＊．•	－	－＊．•	$\bullet \bullet \bullet$
Sodium Carbonate	$\bullet \bullet \bullet$	－．．．	－＊••	－＊••	－•••	－•••	－•••	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	－	－＊．＊	－＊＊	－．．•	$\bullet \bullet \bullet$	－•••	－•••
Sodium Chlorate	－•••	－．．．	－．．．	－．．．	－．．．	－．．．	－•••	－	－	－0．0	－．．．	－＊．＊	－＊．＊	－＊．•	－0．•	－＊．＊	－•••
Sodium Chloride	－•••	－•••	－．．॰	－•••	－•••	－•••	－•••	$\bullet \bullet \bullet$	－•••	－•••	－．．•	$\bullet \bullet \bullet$	－•••	－•••	－．．•	－•••	－•••
Sodium Chlorite	－00•	$\bigcirc 00 \cdot$	－	－	－	．	－	－	－	－0．•	－．．．	$\bigcirc 0 \cdot$	－	－＊．•	－	－＊．＊	－＊．•
Sodium Chloroacetate	－	－	－0．•	－0．•	－．．．	－0．•	－0．•	－	－	－०••	－．．．	－	－	－	－	－	－
Sodium Chromate	$\bullet \bullet \bullet$	－	－•••	－．．．	－•••	$\bigcirc \bullet \bullet$	－•••	－	－	－०••	－．．．	－•••	－	－＊••	－	$\bigcirc \bullet \bullet$	－＊••
Sodium Citrate	－	．	－	－	－	．	－	－	－	－0．•	－．．．	－	－	－	－	－	－
Sodium Cyanide	$\bullet \bullet \bullet$	－＊＊	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$									
Sodium Diacetate	－	－	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$－	－	－	－०．	－．．．	－	－	－	－	－	－
Sodium Diphosphate	$\bullet \bullet \bullet$	－	－	－	－	－	－	－	－	$\bigcirc \bullet \bullet$	－	$\bigcirc \bullet \bullet$	－	－＊••	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Sodium Ethylate	－	－	－	－	－	－	－	－	－	$\bigcirc 0 \bullet$	－．．．	－	－	－	－	－	－
Sodium Ferricyanide	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－＊••	－•••	－•••	－•••	－	－	$\bigcirc \cdots$	－＊＊	－＊••	\checkmark	－＊＊	－	－＊••	－＊••
Sodium Ferrocyanide	－•••	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet \bullet$	－•••	－	－	${ }^{\circ} \bullet \bullet$	－$\bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\stackrel{\bullet \bullet}{ }$	${ }^{\circ} \bullet \bullet$	－	${ }^{\bullet \bullet \bullet}$	${ }^{\circ} \bullet \bullet$
Sodium Fluoride	－•••	－．．•	－．．○	－．．．	－．．．	－．\bullet	－•••	－	－	－0．•	－•••	－•••	－＊．＊		－	－$\cdot \bullet$	－०••
Sodium Fluorosilicate	－	－	－	－	－	－	－	－	－	－0．•	－．．．	－	－	－	－	－	－
Sodium Glutamate	－	－	－	－	－	－	－	－	－	－0．•	－＊＊	－	－	－	－	－	－
Sodium Hydrosulfide	－	－	$\bigcirc \bullet \bullet$	－•＊＊	－•••	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－	－	${ }^{\circ} \bullet \bullet$	－＊＊	－	－	－	－	－	－
Sodium Hydroxide	－00•	$\bullet \bullet \bullet$	－$\bullet \bullet$	－	－	－	－	－＊••	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	－＊•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$

								$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { ت } \end{aligned}$				$\begin{aligned} & \text { 岂 } \\ & \text { 落 } \\ & \text { 응 } \\ & \text { 론 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Sodium Hypochlorite	－＊••	－＊••	－•••	－	－•••	－	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊••	－＊••	－•••	－•••	$\bigcirc 0 \bullet$	－0．•	－•••	－＊•	－0．•
Sodium Hypophosphate	－	－	－	－	－	－	－	－	－	－०••	－	－	－	－	－	－	－
Sodium Hypophosphite	－	－	－	－	－	－	－	－	－	－0．•	－•••	－	－	－	－	－	－
Sodium Hyposulfite	$\bullet \bullet \bullet$	－＊••	－	－	－	－	－	－＊＊	－＊••	$\bullet \bullet \bullet$	－	－＊•	$\bullet \bullet \bullet$	－＊••	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Sodium lodide	－	－	－＊•	－＊．•	－•••	－＊•	－•••	－	－	－0••	－•••	－	－	－	－	－	－
Sodium Lactate	－	－	－	－．．．	－．．．	－•••	－•••	－	－	－0．•	－．．．	－	－	－	－	－	－
Sodium Metaphosphate	－•••	－．．．	－．．•	－．．．	－．．．	$\bullet \bullet \cdot \bullet$	－•••	$\bullet \bullet \bullet$	－•••	－•••	－．．．	－＊•	$\bigcirc \bullet \bullet$	－•••	－•••	－•••	－•••
Sodium Metasilicate	－•••	－．．．	－＊．•	－．．•	－．．．	$\bigcirc \bullet \bullet$	－•••	－	－	－०．•	－．．．	－•••	$\bigcirc \bullet \bullet$	－＊．•	－	－•••	
Sodium Methylate	－	．	－	－	－	－	－	－	－	－०．	－．．．	－		－	－	－	－
Sodium Nitrate	－＊••	－•••	－．．•	－．．．	－．．．	$\bullet \bullet \cdot$	－•••	－0．•	－	－＊．．	－．．．	－＊•	$\bigcirc \bullet \bullet$	－．．．	－．．．	$\bullet \bullet \bullet$	－•••
Sodium Oleate	－	－	－	－	．	－	－	－	－	－०••	－．．．	－	－	－	－	－	－
Sodium Orthosilicate	－	－	－	－	－	－	－	－	－	－0••	－．．•	－	－	－	－	－	－
Sodium Oxalate	－	．	－	－	－	．	－	－	－	－०．•	－$\cdot \bullet$	－	－	－	－	－	－
Sodium Perborate	－＊••	－•••	－•••	－．．॰	－．．॰	$\bullet \bullet$.	－•••	$\bullet \bullet \bullet$	－．．॰	－＊．＊	－．．．	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－＊•	－．．॰	$\bullet \bullet$.	－＊•
Sodium Percarbonate	－	－	－	－	－	－	－	－	－	－0．•	－．．．	－	－	－	－	－	－
Sodium Perchlorate	－	－	－	－	－	－	－	－	－	－0．•	－．．．	－	－	－	－	－	－
Sodium Peroxide	－＊••	－．．．	－＊••	－	－•••	－	$\bullet \bullet \bullet$		－•••	－＊．．	－．．．	－00•	－00•	－＊••	－•••	$\bullet \bullet \bullet$	－＊••
Sodium Persulfate	－	－	－	－	－	－	－	－	－	－0．•	－．．．	－	－	－	－	－	－
Sodium Phosphate，Dibasic	－•••	－＊＊	$\bullet \bullet \bullet \bullet$	－＊＊	－＊＊	$\bullet \bullet \bullet \bullet$	－•••	${ }^{\circ} 0 \bullet$	－	$\bullet \bullet \bullet \bullet$	－•••	${ }^{\circ} \bullet \bullet$	－•••	－•••	－•••	－•••	－•••
Sodium Phosphate，Monobasic	－•••	－＊••	－＊＊	－＊＊	－．．．	$\bullet \bullet \bullet$	－•••	－00．	－	－＊••	－	${ }^{\circ}$－	－•••	－$\bullet \bullet$	－	－•••	－•••
Sodium Phosphate，Tribasic	$\bullet \bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－＊•	$\bullet \bullet \bullet \bullet$	－	－0．	－•••	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－•••
Sodium Plumbite	$\bigcirc \bullet \bullet$	－	－	－	－	－	－	－	－	${ }^{\circ} \bullet \bullet$	－＊＊＊	－	$\bigcirc \bullet \bullet$	－＊＊＊	－	$\bigcirc \bullet \bullet$	－＊••
Sodium Pyrophosphate	－	－	－	－	－	－	－	－	－	${ }^{\circ} \bullet \bullet$	－＊••	－	－	－	－	－	－
Sodium Salicylate	－	－	－	－	－	－	－	－	－	${ }^{\circ} \bullet \bullet$	－＊＊	－	－	－	－	－	－
Sodium Salts	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••			
Sodium Sesquisilicate	－	－	$\bullet \bullet \bullet$	－＊＊	－＊••	$\stackrel{\bullet \bullet}{ }$	$\bullet \bullet \bullet$	－	－	－	－＊＊	－	－	－	－	－	－
Sodium Silicate	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••
Sodium Stannate	－	－	－	－	－	－	－	－	－	－0．•	$\bullet \bullet \bullet$	－	－	－	－	－	－

								$\begin{aligned} & \text { U } \\ & \text { OU } \\ & \text { ज } \end{aligned}$									
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Sodium Sulfate	－•••	－•••	－•••	－•••	－•••	－•••	－•••	－	－•••	－00•	－•••	－＊••	－•••	－•••	－•••	－•••	－＊••
Sodium Sulfide	－•••	－＊••	－•••	－＊．•	－＊••	－•••	－•••	－•••	－＊••	－•••	－•••	－＊••	－•••	－＊••	－	－•••	－＊••
Sodium Tartrate	－	－	－	－	－	－	－	－	－	－0．๑	－•••	－	－	－	－	－	－
Sodium Tetraborate	$\bullet \bullet \cdot$	－＊．	－	－	－	－	－	$\bullet \bullet \bullet$	－＊．•	－0．•	－	－＊＊	－＊＊	－＊．＊	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Sodium Tetrasulfide	－	－	－	－	－	－	－	．	－	$\bigcirc \cdot \bullet$	－	－	－	．	－	－	－
Sodium Thioarsenate	－	－	－	－	－	－	－	－	－	－0．๑	．	－	－	－	－	－	－
Sodium Thiocyanate	$\bullet \bullet \bullet$	－•••	－＊••	－＊＊	－＊＊	$\bullet \bullet \bullet \bullet$	－•••	．	－	－0．•	－•••	－	－	－＊．＊	－＊．	－＊••	－＊••
Sodium Thiosulfate	－＊•	－．．．	－．．．	－．．．	－．．．	－＊．•	－．．．	$\bullet \bullet \bullet$	－＊．	－＊•	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊．＊	－	－＊．•	－＊．•
Sodium Trichloroacetate	－	－	－	－	－	－	－	．	－	－0．•	－•••	－	－	－	－	－	－
Sodium Triphosphate	－•••	$\bigcirc \bullet \bullet$	－	－	－	－	－	－	－	－0．•	－	－．．．	－	－＊．．	－	－•••	－•••
Solvasol 1，2， 3	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	－＊••	－•••	－•••	－＊＊	－•••	$\bigcirc 0 \cdot$－	－．．．	－．．．	－•••	－＊．•	－＊••	－00•	－००	$\bigcirc 0 \cdot$－	${ }^{\circ}$－
Solvasol 13，74	－＊•	－0．	－	－	－	－	－	$\bigcirc 0$.	－．．．	－听	－	－＊＊	－＊．＊	－००－	－	－००	－००॰
Solvents	－•••	$\bigcirc 0 \cdot$	－．．•	－	－	－	－	－	－	－	－	－०••	－＊••	－	－	－	－
Sorbitol	－	．	－•••	－•••	－．．．	－•••	－•••	－	－	－0．๑	－•••	－		－	－	－	－
Sour Crude Oil	－0••	－0．	$\bigcirc 00 \cdot$	－0．•	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot \bullet$	－0．\bullet	$\bigcirc 00 \cdot$	$\bigcirc 00$－	－0．•	－．．．	－	－	－	－	－	－00•
Sour Natural Gas	－0．•	$\bigcirc 0 \cdot$	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot \bullet$	－0．\bullet	－0．	$\bigcirc 0$.	－0．•	－．．．	－	－	－	－	－	－
Soybean oil	－•••	－0．	－．．．	－．．•	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－．．．	－．．•	－•••	－＊＊	－＊＊	－00•	－•••	－0．0	－00•
Spry	－•••	－．．．	－	－		－	－	$\bullet \bullet \bullet$	－$\bullet \bullet$	－＊••	－	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－00•	－	$\bullet \bullet \bullet$	${ }^{\circ} 0 \bullet$
SR10 Fuel	－•••	$\bigcirc 0 \cdot$－	－	－	－	－	－	$\bigcirc 00 \cdot$	－＊＊	－．．．	－	－0．•	$\bigcirc \bullet \bullet$	－00•	－	$\bigcirc 0 \cdot$－	${ }^{\circ}$－
SR6 Fuel	－＊••	－0．•	－．．．	－	－．．．	－	$\bullet \bullet . \bullet$	$\bigcirc 0 \cdot$－	－．．．	－听	－•••	－००•	－＊••		$\bullet \bullet \bullet$	－0．	－००॰
Standard Oil Mobilube G590－EP Lube 5	－	－	－	－	－	－	$\bullet \bullet \bullet \bullet$	${ }^{\circ} 0 \cdot 0$	－＊••	－0．0	$\bullet \bullet \bullet \bullet$	－＊••	－00•	－00．		$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Stannic Ammonium Chloride	－0．•	－．．．	－0．•	－	－	－	－	$\bullet \bullet \bullet$	－＊＊	－0••	－＊＊	$\bullet \bullet \bullet$	${ }^{\circ} \bullet$	$\bullet \bullet \bullet$	－	－•••	$\bullet \bullet \bullet$
Stannic Chloride	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\stackrel{\bullet \bullet}{ }$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊＊	${ }^{\bullet \bullet \bullet}$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$			
Stannic Sulfide	－•••	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－•••	－•••
Stannic Tetrachloride	－0．•	－．．•	－0．•	－	－	－	－	－＊•	－．．•	－0．0	－•••	－•••	$\bigcirc 0 \cdot$	－•••	－	－•••	$\bullet \bullet \bullet \bullet$
Stannous Bisulfate	－0••	－＊＊	$\bigcirc \bullet \bullet$	－	－	－	－	－＊＊	－＊＊＊	－0••	－＊＊	－＊＊	－00•	$\bullet \bullet \bullet \bullet$	－	－${ }^{\circ}$	－$\cdot \bullet$
Stannous Bromide	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bigcirc 0 \bullet \bullet$	－	－	－	－	－＊．•	$\bullet \bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet \bullet$	－	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Stannous Chloride	－•••	－$\bullet \bullet$	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊＊	－$\bullet \bullet$	－$\bullet \bullet$	－\bullet •	－•••	－0．•	－•••	$\bullet \bullet \bullet$	－•••	－•••

CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Stannous Fluoride	－	－	－•••	－•••	－•••	－•••	－•••	－	－	－0••	－•••	－	－	－	－	－	－
Stannous Sulfate	－	－	－	－	－	－	－	－	－	－०••	－•••	－	－	－	－	－	－
Stannous Sulfide	$\bullet \bullet \bullet$	－	－	－	－	－	－	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Stauffer 7700	－＊••	－0．	－．．．	－•••	－•••	－•••	$\bullet \bullet \bullet$	－00•	－＊．•	－＊•	－＊．＊	$000 \cdot$	－	－0．\bullet	－0．0	－00•	－00•
Steam＜150 ${ }^{\circ} \mathrm{C}$	$00 \cdot$	－＊．•	－＊••	－	－	－	－	－0••		－0．•	－•••	$\bigcirc 0 \cdot \bullet$	$00 \cdot$	－00•	－•••	－＊••	－
Steam $>150^{\circ} \mathrm{C}$	$\bigcirc 0 \cdot$	－0．•	－	－	－	－	－	$\bigcirc \bigcirc \bullet$	$\bigcirc 0 \cdot$		－．．．	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$－	$\bigcirc \bigcirc \bullet$	－	$\bigcirc 0 \cdot$－	
Stearic Acid	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－＊••	－•••	－•••	$\bullet \bullet \bullet \bullet$	－•••	－．．．	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－．．．	－＊••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－＊••
Stoddards Solvent（ASTM D－484－52）	－•••	－0．	－．．．	－．．．	－．．•	－＊．•	－•••	－0．•	－．．．	－•••	－＊••	－＊•	－＊•		－＊．•	$\bigcirc 0 \cdot$	－0．•
Strontium Acetate	－	－	${ }^{\circ}$－	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	－00•	－	－	$\bigcirc \bullet \bullet$	－•••	－	－	－	－	－	－
Strontium Carbonate	－	－	－	－	－	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－＊••	－	－	－	－	－	－
Strontium Chloride	－	－	－	－	－	－	－	－	－	－०•	－•••	－	－	－	－	－	－
Strontium Hydroxide	－	－	－	－	．	－	－	－	－	－0••	－•••	－	－	－	－	－	－
Strontium Nitrate	－	－	－	－	－	－	－	－	－	－०••	－．．．	－	－	－	－	－	－
Styrene，Monomer	－0．	－0．	－．．．	－．．．	－•••	－•••	－•••	－00•	－०••	$\bigcirc 0 \cdot$	－•••	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \bullet$	$\bigcirc 0 \cdot \bullet$	－＊．．	$\bigcirc 0 \cdot$－	$\bigcirc \bigcirc \bigcirc$
Succinic Acid	－•••	－•••	－＊．＊	－．．．	－．．．	－0．0	－•••	－	－	－0．•	－．．．	－	－	－	－	－	－
Sucrose Solution	－•••	－．．．	－．．•	－．．．	－．．．	－．．•	－•••	－•••	－．．．	－•••	－．．．	－•••	－00•	－•••	－•••	－•••	－•••
Sulfamic Acid	－	$\bigcirc 0$.	－＊．	$\bigcirc \bullet \bullet$	－•••	－＊••	－•••	－	－	－0．0	－•••	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$	－	－	－•••	－＊••
Sulfanilic Acid	－	－	－	－	－	－	－	－	－	－0．•	－．．．	－	－	－	－	－	
Sulfanilic Chloride	－	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	－	－	－	－	－	－	－
Sulfanamide	－	－	－	－	－	－	－	－	－	$\stackrel{\bullet \bullet}{ }$	－	－	－	－	－	－	－
Sulfite Liquors	$\bigcirc \bullet \bullet$	－＊•	－＊．	－•••	－•••	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－0．•	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－$\bullet \bullet$	－	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－＊॰
Sulfolane	$\bigcirc \bullet \bullet$	－•••	－•••	－	－	－	－	－	－	－•••	－＊．．	－	－	－	$\bullet \bullet \bullet$	－	－
Sulfonic Acid	${ }^{\circ} 0 \cdot$	－	－	－	－	－	－	－	－		－	－	－	－	－	${ }^{\circ} 0 \cdot$	${ }^{0} 0 \bullet$
Sulfonyl Chloride	－0••	－•••	${ }^{\circ} \bullet \bullet$	－	－	－	－	－＊••	－＊••	${ }^{\circ} \bullet \bullet$	－＊•	－•••	${ }^{\circ} 0 \cdot$	－•••	－	－•••	－•••
Sulff hite Liquors	$\bullet \bullet \bullet$	－．．•	－＊＊	－	－	－	－	－00•	$\stackrel{\bullet \bullet}{ }$	－	－	－•••	${ }^{\circ} \bullet \bullet$	$\bullet \bullet \bullet$	－	${ }^{\bullet \bullet \bullet}$	－＊••
Sulfur	$000 \cdot$	－•••	－	－	－	－	－	－0••	－＊＊	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet \bullet$	－•••	－	${ }^{\circ} 0 \cdot$	－	－•••	${ }^{0} 0 \bullet$
Sulfur Chloride	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－＊＊	$\bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	－＊••	${ }^{\circ} 0 \cdot 0$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	${ }^{\circ} \bullet \bullet$	${ }^{\circ} 0 \cdot 0$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \bullet$
Sulfur Dioxide，Dry	－00•	－•••	－哈•	－听	－＊．•	－＊．＊	－•••	－•••	－听	${ }^{\circ} \times 1$	－．．．	$\bigcirc 0 \cdot$	${ }^{\circ} 0 \cdot$	－0••	－•••	$\bigcirc \bullet \bullet$	－०••

CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Sulfur Dioxide，Liquified	－00•	－•••	－＊••	－•••	－＊••	－＊＊	－•••	－＊•	$\bigcirc \bullet \bullet$	－0．•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊••	－0．	－	－＊••	－•••
Sulfur Dioxide，Wet	${ }^{\circ} 0 \cdot 0$	－＊＊	－•••	－•••	－＊••	－•••	－•••	－＊••	－•••	－0．•	－	－0．	－0．•	－	－	－•••	－
Sulfur Hexafluoride	$\bigcirc \bullet \bullet$	－＊••	－＊••	－＊••	－＊••	－＊••	$\bullet \bullet \bullet$	－＊••	－＊••	－＊••	$\bullet \bullet \bullet$	－•••	－＊••	$\bigcirc 0 \cdot$－	$\bigcirc \bullet \bullet$	－•••	$\bigcirc 0 \cdot \bullet$
Sulfur Liquors	$\bigcirc \bullet \bullet$	－＊••	－	－	－	－	－	－00•	－＊•	－＊••	－	$\bigcirc \bullet \bullet$	－	－	－	$\bigcirc \bullet \bullet$	－＊•
Sulfur Monochloride	－		－	－	－	－	－	－०••	－•••	－•••	－	$\bigcirc 0 \cdot$	－0••	$\bigcirc 0 \cdot$	－	${ }^{\circ} 0 \cdot$	${ }^{\circ} \mathrm{O} \bullet$
Sulfur Tetrafluorlde	－	－	－0．•	－．．．	－•••	－0．•	－•••	－	－	－	－．．．	－	－	－	－	－	－
Sulfur Trioxide	$\bigcirc 00 \cdot$	－＊．•	－＊••	－．．．	－•••	－．．•	－•••	－＊•	$\bigcirc \bullet \bullet$	－0．•	－•••	$\bigcirc 00$－	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$－	－•••	$\bigcirc \bullet \bullet$	－＊••
Sulfuric Acid，20\％	$\bigcirc 0 \cdot \bullet$	－．．．	－．．．	－．．．	－．．．	－．．•	－•••	－	－．．．	－0••	－	－०••	－0．•	－＊．＊	－＊．	－＊••	－०••
Sulfuric Acid，20\％Oleum	$\bigcirc 0 \cdot$－	－•••	－．．．	－．．．	－．．•	－．．•	－•••	$\bullet \bullet \bullet$	－．．．	$\bullet \bullet \cdot$	－•••	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$		－•••	${ }^{\circ} 0 \cdot 0$	${ }^{\circ} \mathrm{O} \bullet$
Sulfuric Acid，40\％	－0．•	－．．．	－．．．	－．．．	－．．．	－．．．	－•••	－0．•	－．．．	－	－	$\bigcirc \bigcirc \bullet$	－	－•••	－＊．•	－＊••	－००॰
Sulfuric Acid，60\％	－0••	－•••	－＊••	－．．．	－•••	－．．．	－•••	－0．•	$\bigcirc \bigcirc \bullet \bullet$	－	－	$\bigcirc \bigcirc \bullet \bullet$	－0．	$\bigcirc \bigcirc \bullet$	－•••	－＊••	${ }^{\circ} \mathrm{o} \bullet$
Sulfuric Acid，Conc．	－0．•	－0．•	－．．．	－．．．	－．．．	－．．•	－•••	－00•	－0．•	－	－•••	$\bigcirc 0 \cdot$－	$\bigcirc 00 \cdot$		－．．．	$\bigcirc 00 \cdot$	－००－
Sulfuric Acid，Fuming	－0．	$\bigcirc 0$.	－＊••	－．．•	－•••	－＊．•	－•••	－0．•	$\bigcirc 00 \cdot$	－0．•	－	$\bigcirc 0 \cdot$－	${ }^{\circ} 0 \cdot$	$\bigcirc 00 \cdot$	－•••	${ }^{\circ} 0 \cdot 0$	${ }^{\circ} \mathrm{o}$－
Sulfurous Acid	$\bigcirc \bullet \bullet$	－＊•	－0．॰	－＊．＊	－＊•	$\bigcirc 0 \cdot \bullet$	－＊•	－00•	－	$\bullet \bullet \bullet$	－•••	－0．	$\bigcirc 0 \cdot$	－•••	－•••	$\bigcirc \bullet \bullet$	－०••
Sulfurous Oxychloride	－•••	－	－	－	－	－	－	－	－	－	－	－•••	－	－	－	$\bigcirc 00 \cdot$	$\bigcirc 00 \bullet$
Sunlight	－	－•••	－	－	－	．	－	－	－	－	－		－0．0	－	－	－	－
Sunoco 3661	－•••	－0．	－•••	－	－	－	－	－00•	－•••	－•••	－•••	－0．0	－•••	－＊•	－	－0．	${ }^{\circ}$
Sunoco All Purpose Grease	－•••	－0．	－	－	－	－	－	－0．•	－．．•	－•••	－	$\bigcirc \bullet \bullet$	－＊．•	$\bigcirc 0 \cdot$	－		－00•
Sunoco SAE 10	－•••	$\bigcirc 0 \cdot$－	－．．．	－•••	－•••	$\bullet \bullet . \bullet$		－00•	－．．．	－•••	－•••	$\bigcirc \bullet \bullet$	－•••	$\bigcirc 00$－	－•••	$\bigcirc 00 \cdot$	
Sunoco XS－820	－	－0．•	－．．．	－	－		－	－	－	－	－	－	－	－	－	－	－
Sunsafe	－•••	$\bigcirc 0 \cdot$	－	－	－	－	－	－	－．．॰	$\bullet \bullet \bullet$	－	－＊•	${ }^{\circ} 0 \cdot 0$	$\bigcirc 0 \cdot$－	\checkmark	$\bigcirc \bigcirc$	－0．•
SuperShell Gasoline	－•••	－0．•	－．．．	－．．．	－•••	－＊．＊	－•••	－००॰	－听	－•••	－•••	－＊．＊	－＊•	－0．	－0．•	${ }^{\circ}$－	－0．•
Swanfinch EP Lubricant	－•••	${ }^{\circ} \bullet \bullet$	－•••	－．．•	－．．•	－•••	－•••	－00•	－．．•	－•••	－•••	－0．•	－•••	$\bigcirc 0 \cdot$	－••	${ }^{\circ} \stackrel{\bullet}{ }$	${ }^{\circ} 0 \cdot$
Swanfinch Hypoid 90	－•••	$\bigcirc 0 \cdot$	－	－	－	－	－	－0．•	－．．．	－•••	－	$\bigcirc \bullet \bullet$	－．．．	$\bigcirc 0 \cdot$	－	${ }^{\circ} 0 \cdot 0$	${ }^{\circ} \mathrm{o}$－
Sweet Birch oil	－00•	$\bigcirc 0 \cdot \bullet$	－•••	－	－	－	－	－	－	－	－	－0．	－	－	－	${ }^{\bullet \bullet \bullet}$	${ }^{\circ} 0 \cdot$
Sweet oil	－•••	－＊＊＊	－•••	－	－	－	－	－00•	－	－	－	${ }^{\circ} \bullet \bullet$	$\bigcirc \bullet \bullet$	－	－	－$\bullet \bullet$	－00•
Syrup	－•••	－＊＊•	－＊＊	－	－	－	－	－	－	－	－	－＊＊	－	－	－	－	－
Table Salt	－•••	－•••	－•••	－	－	－	－	$\bigcirc \bigcirc \bullet$	－•••	$\bullet \bullet \bullet$	－	－•••	$\bullet \bullet \bullet$	－•••	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$

CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Tallow	－0．	$\bigcirc 0$.	－．．•	－•••	－•••	－•••	－•••	－00•	－•••	－•••	－•••	－0••	－•••	－	－	－	－
Tannic Acid	－＊．•	－．．•	－．．•	－＊．•	－＊．•	－•••	－•••	－•••	－．．•	－．．•	－．．．	－•••	－•••	${ }^{\bullet \bullet \bullet}$	－•••	－＊＊	－•••
Tar	－＊••	－0．	－＊．•	－	－＊．॰	－	$\bullet \bullet \bullet$	－＊••	－＊••	－＊••	－＊．•	－0••	－	$\bigcirc 00 \cdot$	－•••	$\bullet \bullet \bullet$	－०••
Tar，Bituminous	$\bigcirc \bullet \bullet$	－0．	－．．．	－	－	－	－	－＊．＊	－．．．	－＊．•	－．．．	－0．	－	－0．•	－	－0．	－$\bullet \bullet$
Tar，Camphor	－00•	－0．	－．．．	－	－	－	－	－．．•	－＊．＊	$\bigcirc 00$－	－．．．	$\bigcirc 0 \cdot$－	－＊•	$\bigcirc 00 \cdot$	－	$\bigcirc 0 \cdot$	$\bigcirc 00$ •
Tartaric Acid	$\bullet \bullet \bullet$	－०••	－＊．•	－．．．	－＊．•	－＊••		－＊．＊	－．．．	－•••	－．．．	$\bigcirc 0 \cdot$	－•••	$\bigcirc 0 \cdot$	－•••	－＊•	$\bullet \bullet \bullet$
Terephthalic Acid	－	－	－＊••	－＊••	－＊••	$\bullet \bullet \bullet$	－•••	－	－	－0．•	－．．．	．	－	－	－	－	－
Terpene	－0••	$\bigcirc 0 \bullet$	－＊••	－	－	－	－	－	－	－	－	－00•	－	－	－	$\bigcirc 0 \cdot$	$\bigcirc \bigcirc$
Terpineol	－＊••	－0．•	－．．．	－．．．	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－••	－＊••	－．．．	$\bigcirc 0 \cdot$－	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$－	－•••	－	－0．•
Terpinyl Acetate	－	．	$\bigcirc 0 \cdot$	$\bigcirc \bigcirc \bigcirc$	－०．\bullet	－0．${ }^{\circ}$	$\bigcirc \bigcirc$	－	．	－．．．	－．．．	－	－	－	－	－	－
Tertrabromoethane	$\bigcirc 0 \cdot$－	－0．	－	－	－	－	－	$\bigcirc 0 \cdot$－	－＊．	－0．	－•••	$\bigcirc 0 \cdot$－	－	－0．	－	$\bigcirc 0 \cdot$－	${ }^{\circ} 0 \cdot$
Tetrabromomethane	$\bigcirc 0 \cdot$	－0．•	－＊••	－＊••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	－＊．．	－0．	－$\bullet \bullet$	－00•	－	$\bigcirc 0 \cdot$	－०••	－0．•	－0．•
Tetrachloroethane	－0．		－．．•	－．．．	－．．．	－•••	－•••	－	－＊．＊	$\bigcirc 0 \cdot$－	－．．＊	－0．\bullet	－0．0	－0．	－००	－0．	$\bigcirc 0 \cdot$－
Tetrachloroethylene	$\bigcirc \bullet \bullet$	－0．	－．．．	－．．．	－．．．	－•••	－．．．	－0．	－＊．•	－0．	－．．．	－0．\bullet	－0．•	－0．	－००．	－0．	
Tetraethyl Lead	$\bigcirc \bullet \bullet$	－0．	－．．．	－•••	－．．．	－•••	$\bullet \bullet$.	－		－＊••	－．．．	－0••	$\bullet \bullet \bullet$	$\bigcirc 00 \cdot$	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$	
Tetrahydrofuran（THF）	－0．	－0．•	$\bigcirc 00$	$\bigcirc 00$－	$\bigcirc 00$	－00•	－0．\bullet	－0．	－0．	$\bigcirc 0 \cdot$－	－．．．	$\bigcirc 00 \cdot$	－$\bullet \bullet$	－0．	－००	－＊•	－0．•
Tetralin（Tetrahydronaphthalene）	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$－	－＊．	－．．•	－．．．	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	－•••	$\bigcirc 00$－	－．．．	$\bigcirc 0 \cdot$－	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot$－	－००•	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot$ •
Tetramethyl Ammonium Hydroxide（TMAH） 5	－＊＊	－	－	－	－	－	－	－	－0••	－	．	－	－	－		－	－
Tetra methyl Dihydropyridine	$\bigcirc \bullet \bullet$	${ }^{\circ} \bullet$	$\bullet \bullet \bullet \bullet$	－	－	－	－	－	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－•••	${ }^{\circ} 0 \cdot$	－0••	${ }^{\circ} 0 \cdot 0$	－	${ }^{\circ} 0 \cdot$	${ }^{0} 0 \cdot$
Tetraphospho Glucosate	$\bigcirc 0 \cdot \bullet$	－．．．	－0．•	－	－	－	－	－＊••	－．．．	－०．॰	－．．．	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	$\bullet \bullet \bullet$	－	－•••	－•••
Tetrol	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot$－	－0．0	－	－	－	－	－	－	－	－	${ }^{\circ} \bullet \bullet$	－	－	－	${ }^{\circ} \bullet$	${ }^{\circ}$ •
Texaco 34x0 Gear Oil	－•••	－0．•	－．．॰	－．．•	－•••	－•••	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	－＊••	－0．	$\bullet \bullet \bullet$		$\bullet \bullet \bullet$	${ }^{\circ} \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} \bullet$	$\bigcirc \bigcirc$
Texaco Capella A and AA	－＊＊＊	${ }^{\circ} \bullet$	－	－	－	－	－	${ }^{\circ} \bullet$	－•••	－•••	－	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	${ }^{\circ} \circ$	－	${ }^{\circ} \stackrel{0}{ }$	${ }^{0} 0 \cdot$
Texaco Meropa 220 （No Lead）	－＊＊	${ }^{\circ} \bullet$	－	－	－	－	－	$\bigcirc 00$－	－＊••	－•••	－	${ }^{\bullet \bullet} \cdot$	－＊•	${ }^{\circ} 0 \cdot$	－	${ }^{\circ} 0 \cdot$	
Texaco Regal B	－＊＊	－0．	－	－	－	－	－	${ }^{\circ} \bullet$	$\bigcirc 0 \cdot$－	－•••	－	$00 \cdot$－	$\bullet \bullet \bullet \bullet$	${ }^{\circ} \bullet \bullet$	－	${ }^{\circ} \bullet$	${ }^{\circ} 0 \cdot$
Texaco Uni－Temp Grease	－＊＊	－0．	－＊＊•	－	－0．＊	－	$\bullet \bullet \bullet$	${ }^{\circ} \bullet$	－＊＊	$\bullet \bullet \bullet \bullet$	－＊＊	－＊••	－•••	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet$	${ }^{\circ} \bullet$	－00•
Texamatic 1581 Fluid	$\bullet \bullet \bullet \bullet$	－0．	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet \bullet$	－0．	－\bullet ．	$\bullet \bullet \bullet \bullet$	－	－．．•	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－	${ }^{\circ} \bullet$	${ }^{\circ} 0 \cdot$
Texamatic 3401 Fluid	$\bullet \bullet \bullet$	－0．	－	－•••	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc 00 \cdot$	$\bigcirc \bullet \bullet$	－＊．•	－	－•••	－＊••	$\bigcirc 0 \cdot$	－	$\bigcirc 0 \cdot$	\bigcirc

								$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { ت } \end{aligned}$				$\begin{aligned} & \text { 岂 } \\ & \text { 落 } \\ & \text { 응 } \\ & \text { 론 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Texamatic 3528 Fluid	－•••	$\bigcirc \bigcirc$	－	－•••	－$\bullet \bullet$	$\bullet \bullet \bullet$	－•••	－0．•	－＊•	$\bullet \bullet \bullet \bullet$	－	－$\bullet \bullet$	－＊••	$\bigcirc 0 \bullet$	－	$\bigcirc 0 \bullet$	－0．•
Texamatic 3X2X Fluid	$\bullet \bullet \bullet \bullet$	${ }^{\circ}$－	－•••	－	－＊．•	－	－•••	－00•	－•••	－•••	－•••	－＊••	－．．．	$\bigcirc 0 \cdot$	－•••	$\bigcirc 0 \cdot \bullet$	$\bigcirc \bigcirc$
Texamatic A Transmission Oil	－•••	－00•	－	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－＊．	－•••	－	－＊••	－＊．•	－0．	－	$\bigcirc 00 \bullet$	－ $0 \cdot$
Texas 1500 oil	$\bullet \bullet \bullet$	－0．•	－＊．•	－	－	－	－	$\bigcirc \bullet \bullet$	－＊．•	$\bullet \bullet \bullet \cdot$	$\bullet \bullet \bullet$	$000 \cdot$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－	－0．•	－00•
Therminol 44， 45	－0．	－0．	－．．．	－•••	－•••	－•••	－•••	－00•	．	－0．	－	$\bigcirc 0 \cdot$－	－	－	－	－00•	－
Therminol 55	－	－	－．．．	－	－	－	－	－	－	－＊••	－•••	－	－	－	－	－	－
Therminol 66	$\bigcirc 0 \cdot$	$\bigcirc 00 \cdot$	－	－	－	－	－	－＊••	－	－	－	－00•	－	－	－	$\bigcirc 00 \bullet$	－
Thioamyl Alcohol	$\bullet \bullet \bullet$	－0．	－$\cdot \bullet$	－	－	－	－	－．．．	－．．．	－•••	－•••	－0．	－•••	－＊••	－	$\bigcirc \bigcirc$	－0．•
Thiodiacetic Acid	००．•	－•••	－•••	－	－	－	－	－＊＊	－＊．•	－०•	－＊．•	－•••	$\bigcirc 00 \bullet$	－＊．•	－	－•••	－•••
Thioethanol	－०．•	－．．．	－0．•	－	－	－	－	－＊．•	－＊．•	○○•	－•••	－•••	$\bigcirc \bigcirc$	－＊．•	－	－•••	－•••
Thioethyl Alcohol	$\bigcirc 00$－	$\bigcirc 00$－	－＊•	－	．	－	－	－	－	－	－•••	－0．	－	－	－	－0．•	－0．•
Thioglycolic Acid	$\bigcirc \bigcirc \bullet$	－．．．	－0．0	－	－	－	－	－•••	－．．．	－0••	－•••	－•••	－0．•	－•••	－	－•••	－•••
Thiokol tp－90b	－00•	－．．•	－＊．＊	－．．．	－．．＊	－＊•	－•••	－	－＊•	－00•	－．．•	－•••	－	$\bigcirc 00 \cdot$	－•••	$\bullet \bullet \bullet$	－
Thiokol TP－95	－0．	－．．．	－．．．	－．．．	－．．．	－••	－．．ヤ	－••	－•••	－0．	－．．．	－•••	－	－0．	－＊．．	－•••	－
Thionyl Chloride	$\bigcirc 0 \cdot$	\bigcirc－•	$\bigcirc \bullet \bullet$		$\bullet \cdot \bullet \bullet$	$\stackrel{\bullet \bullet}{ }$	$\bullet \bullet \bullet \bullet$	－	－	－＊••	－•••	－00•	－00•	－00•	－	－00•	－00•
Thiophene	$\bigcirc 0 \cdot$	$\bigcirc 0$.	－0．	－0．•	－0．•	$\bigcirc 0 \cdot \bullet$	००••	－	－	－＊．．	－•••	$\bigcirc 0 \cdot$	－	－	－	－०••	－0．•
Thiophosphoryl Chloride	－	－	－	－	－	－	－	－	－	－०．．	－•••	－	－	－	－	－	－
Thiourea	－	－	－	－	－	－	－	－	－	－0••	－．．．	－	－	－	－	－	－
Thorium Nitrate	－	－	－	－	－	－	－	－	－	－0••	－•••	－	－	－	－	－	－
Tidewater Multigear 140 EP Lube	－•••	$\bigcirc 0$－	－	－	－	－	－	－00•	－．．．	－＊••	－	－••	－•••		\checkmark	$\bigcirc 0 \cdot$－	－००॰
Tidewater oil（Beedol）	－•••		－．．•	－	－	－	－	－•••	－．．．	－•••	－•••	－•••	－•••	$\bigcirc 0 \cdot$－	－•••	－0．\bullet	${ }^{\circ} \mathrm{O}$ •
Tin Chloride	－＊＊	－＊．•	－	－	－	－	－	－•••	－．．．	－•••	－	－0．0	－．．•	－	－	－＊•	－•••
Tin Tetrachloride	－•••	－$\bullet \bullet$	－•••	－	－	－	－	$\bigcirc \bullet \bullet$	－．．•	－•••	－•••	$\bigcirc \bullet \bullet$	－＊•	－	－	－•••	－•••
Titanic Acid	－	－	－	－	－	－	－	－	－	－0．•	－•••	－	－	－	－	－	－
Titanium Dioxide	－	－	－•••	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－	－	－०．•	$\bullet \bullet \bullet \bullet$	－	－	－	－	－	－
Titanium Salts	$\bigcirc \bullet \bullet$		－•••	－	－	－	－	－	－	－	－	－	$\bigcirc \bullet \bullet$	－	－	－	－
Titanium Sulfate	－	－	－	－	－	－	－	－	－	－0••	$\bullet \bullet \bullet \bullet$	－	－	－	－	－	－
Titanium Tetrachloride	－＊＊	－00•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－00•	－＊•	－＊＊	$\bullet \bullet \bullet \bullet$	－00•	－00•	${ }^{\circ} 0 \cdot$	$\bullet \bullet \bullet$	${ }^{\circ} \stackrel{\bullet}{ }$	${ }^{\circ} \stackrel{0}{ }$

												$\begin{aligned} & \text { 岂 } \\ & \text { 落 } \\ & \text { 응 } \\ & \text { 롱 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Toluene	$\bigcirc 0 \cdot$	$\bigcirc \bigcirc \bullet$	－＊．•	－•••	－•••	－＊••	$\bullet \bullet \bullet$	$\bigcirc \bigcirc$	－＊•	－0．•	－•••	$\bigcirc \bigcirc \bullet$	$\bigcirc 0 \cdot$ •	$\bigcirc 0 \bullet$	$\bigcirc 0 \bullet$	$\bigcirc 0 \bullet$	－00•
Toluene Diisocyanate（TDI）	$\bigcirc 0 \cdot \bullet$	－＊••	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$－	－०．७	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot \bullet$	$\bigcirc \bigcirc$	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$－	－．．．•	$\bigcirc 0 \bullet$	－	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot$	－＊•	－00•
Toluene Sulfonyl chloride	－＊•	$\bigcirc 00 \cdot$	－＊．•	－	－	－	－	－	－＊••	－＊••	－．．••	$\bigcirc 0 \cdot \bullet$	－0••	$\bigcirc 00 \cdot$	－	$\bigcirc 00 \cdot$	－00•
Toluene Sulfonic Acid	－0••	－•••	－0．•	－	－	－	－	－＊•＊	－•••	－0．•	－．．．	$\bullet \bullet \bullet$	$000 \cdot$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Toluidine	$\bigcirc 0 \cdot \bullet$	－	－	－	－	－	．	－	－	－＊••	－＊．•	．	－	．	－	$\bigcirc 0 \cdot$	－00•
Toluol	$\bigcirc \bigcirc \bigcirc$	$\bigcirc 00 \bullet$	－	－	－	－	．	$\bigcirc \bigcirc \bullet$	－＊．	－0．0	－	$\bigcirc \bigcirc \bigcirc$	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot$	－		－00•
Toluquinone	－	－	－	－	－	－	－	－	－	－＊．＊	－	－	－	－	－	－	－
Tolyaldehyde	－	－	－	－	－	－	－	－	－	－0．•	－．．．	－	－	－	－•••	－	－
Transformer Oil	－•••	$\bigcirc 0 \cdot$	－•••	－•••	－．．．	－•••	－•••	－＊．．	－•••	－•••	－．．．	－．．•	－•••	$\bigcirc 0 \cdot$－	－•••	－0．	－00•
Transmission Fluid Type A	$\bullet \bullet$.	$\bigcirc 00 \bullet$	－．．．	－．．．	－．．．	－．．．	$\bullet \bullet$.	－＊．．	－．．．	－．．．	－．．．	－．．•	－•••	$\bigcirc 0 \cdot$－	－．．．	－0．	－००॰
Tricresyl Phosphate	$\bigcirc 0$.	－．．．	－＊•	－	－	－	．	－०••	－••	$\bigcirc 00$－	－．．．	－．．•	－0．	－0．•	－	－•••	－00•
Triacetin	－＊•	－．．．	$\bigcirc 00$－	－0．•	－0．•	－0．	－0．•	－	－0．\bullet	－•••	－．．．	－．．•	－0．\bullet	－0．•	－०．	－＊．．	－＊••
Triaryl Phosphate	$\bigcirc 0 \cdot$－	－．．．	－•••	－	－	－	－	－०•	－＊．	$\bigcirc 00 \cdot$	－•••	－0．\bullet	－0．\bullet	$\bigcirc 0 \cdot$－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$
Tribromomethyl Benzene	－	－	－	．	－	．	．	－		－＊••	－	－	－	－	－	－	－
Tributoxyethyl Phosphate	$\bigcirc 0 \cdot \bullet$	$\bullet \bullet \bullet$	${ }^{\bullet \bullet} \cdot$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－0．	－•••	$\bigcirc \bigcirc \bigcirc$	$\bigcirc 0 \cdot \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－＊••
Tributy Amine	－．．•	．	－0．	－0．	$\bigcirc 0$.	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot \bullet$	－	－	－	－．．．	－	－	－	－	$\bullet \bullet \bullet$	－＊••
Tributyl Citrate	－	－	$\bigcirc 00 \cdot$	$\bigcirc 00 \cdot$	$\bigcirc 00 \cdot$	－00•	$\bigcirc 00 \cdot$	－	－	－0．•	－•••	－	－	－	－	－	－
Tributy Mercaptan	－००•	$\bigcirc 0 \cdot$	－＊．．	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$		$\bigcirc \bullet \bullet$	－00•	－$\cdot \bullet$		－	$\bigcirc 00 \cdot$	－	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \bullet$
Tributyl Phosphate	$\bigcirc \bigcirc \bigcirc$	－•••	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$－	$\bigcirc 0$.	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot$	${ }^{\circ} \bullet$	－0．•	－．．．		${ }^{\circ} \bullet \bullet$	${ }^{\circ} \bullet$	$\cdots \cdot \bullet$	$\bigcirc \bullet \bullet$	－
Trichloroacetic Acid（TCA）	－．．•	－．．．	－0．•	－	－＊．．	．	－．．•	$\bigcirc \bigcirc$	－०．	－．．．	－．．．	$\bigcirc \bigcirc$	$\bigcirc 0 \cdot$	$\bigcirc \bigcirc \bullet$	－०．•	$\stackrel{\bullet \bullet}{ }$	－०••
Trichloroacetyl Chloride	－	－	－	－	－	－	－	－	－	$\bigcirc \bullet \bullet$	－＊••	－	－	－	－	－	－
Trichlorobenzene 1，2， 3	－००•	－	－＊．．	－	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－००•	$\bigcirc 00 \cdot$	－＊•	－$\cdot \bullet$		${ }^{\circ} 0 \cdot$	${ }^{\circ} \stackrel{0}{ }$	－	${ }^{\circ} \bullet \bullet$	${ }^{\circ} 0 \bullet$
Trichloroethane 1		${ }^{\circ}$－	－•••	－	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－0॰•	$\bullet \bullet \bullet$	${ }^{\circ} \bullet$	－•••		${ }^{\circ} 0 \bullet$	$\bigcirc 0 \cdot$－		$\bigcirc 00 \cdot$	－00•
Trichloroethylene（TCE）	－0．•	－0．	－•••	－	－	－	－	－००•	－0．•	－0．•	－•••	－0．\bullet	－00•	$\bigcirc 0 \cdot$－	－0．	${ }^{\circ}$－	－00•
Trichlorofluoromethane（Freon 11）	－••	－0．	－•••	－	－•••	－	－•••	－0．•	－•••	－•••	－•••	－0．•	－	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot$－	${ }^{\circ} \bullet$	－00•
Trichloromethane	－00•	${ }^{\circ} \bullet$	－•••	－	－	－	－	－0．•	－．．．	－0．•	－	${ }^{\circ} 0 \cdot$	$000 \cdot$	${ }^{\circ} 0 \cdot$	－	${ }^{\circ} \bullet$	${ }^{\circ} 0 \bullet$
Trichloropropane	$\bullet \bullet \bullet$	－	－	－	－	－	－	－	－	${ }^{\circ} \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \bullet$
Trichlorosilane	－	－	－	－	－	－	－	－	－	$\bigcirc 0 \cdot$	－．．．	－	－	－	－	－	－

								$\begin{aligned} & \text { 岂 } \\ & \text { OU } \\ & \text { 位 } \end{aligned}$									
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Trichlorotrifluoroethane（Freon 113）	－＊••		－•••	－	－•••	－	－•••	$\bigcirc \bigcirc$		－•••	－•••	－•••	－＊•	－•••	－0．	$\bigcirc 0 \cdot$－	－00•
Tricresyl Phosphate	－0．•	－．．•	－．．．	－＊．•	－＊．•	－•••	－•••	$\bigcirc \bullet \bullet$	－•••	－0．	－．．．	－0．	－0．\bullet	－0．	－＊．•	－•••	－०••
Tridecanol	－•••	－	－•••	－	－	－	－	－	－	－	－	－	－	－	－	－•••	－00•
Triethanolamine（TEA）	－0••	－•••	$\bigcirc 00 \cdot$	$\bigcirc 00 \cdot$	－00•	－00•	－00•	－००	$\bigcirc 0$.	－0．•	－•••	－00•	－00•	－＊••	－．．•	－•••	－＊．•
Triethyl Aluminum	－00•	$\bigcirc 0 \cdot \bullet$	－•••	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet . \bullet$	－	－	－	－．．．	－0．	$\bigcirc 00 \cdot$	$\bigcirc 00 \cdot$	－	－०．•	－00•
Triethyl Amine	$\bullet \bullet \bullet$	－．．．	－	－0．	－0．	－0．	－00•	－००	－	－0．•	－．．．	－•••	－0．•	$\bigcirc 0 \cdot$	－	－०．•	－＊＊＊
Triethyl Borane	－0．	－0．•	－．．．	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－＊．•	－．．．	$\bigcirc 0 \cdot$	－0．•	$\bigcirc 0 \cdot$	－	$\bigcirc \bullet \bullet$	－00•
Triethyl Phosphate	－0．•	－•••	－＊••	－	－	－	－	$\bigcirc \bullet \bullet$	$\bullet \bullet$	－．．．	－．．．	－	－	－	－	－	－
Triethylene Glycol（TEG）	$\bullet \bullet \bullet$	－	－＊．•	－	－．．．	－	－•••	－	．	－0．•	－．．．	－	－	－	－	－•••	－•••
Trimethyl Amine（TMA）	－	－	－0．	－0．	$\bigcirc 0$.	－0．•	－0．•	－	－	－०．॰	－＊．•	－	－	－	－	－	－
Trimethyl Borate（TMB）	－	－	－	－	－	．	－	．	．	－＊．•	－．．．	－	－	－	－	－	－
Trimethyl Methane	－•••	－	－•••	－	－	－	－	－	－	－	－	－	－	－	－		${ }^{\circ} 0 \bullet$
Trimethylpentane	$\bullet \bullet \bullet \bullet$	$\bigcirc 0 \cdot$	－	－	－	－	－	$\bigcirc 0 \bullet$	－	$\bullet \bullet \bullet \bullet$	－＊••	$\bigcirc 0 \cdot \bullet$	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$－	－	$\bigcirc 0 \cdot$	－00•
Trinitrotoluene（TNT）	－0．•	$\bigcirc 0 \cdot$	－．．．	－．．•	－．．॰	$\bigcirc \bullet \bullet$	－•••	－०••	－．．．	－0．	－．．．	－•••	－	－0．	－．．．	－0．	－0．＾
Trioctyl Phosphate	－00•	－•••	－＊．．	－＊．．	－．．．	－＊••	$\bullet \bullet \bullet$	－०•	－＊．．	$\bigcirc 0 \cdot$	－•••	－0．－	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$	－＊••	$\bullet \bullet \bullet \bullet$	${ }^{\circ} 00 \bullet$
Triphenyl Phosphite	－00•	－	$\bigcirc 0 \cdot \bullet$	－	－	－	－	．	．	－	－	－	－	－	－＊••	$\bullet \bullet \bullet$	${ }^{\circ} 0 \bullet$
Tripoly Phosphate	－00•	－•••	$\bigcirc \cdot \bullet$	－	－	－	－	$\bigcirc \bullet \bullet$	－•••	$\bigcirc 0 \cdot$	－•••	－0．•	$\bigcirc 0 \cdot \bullet$	－0．•	－	$\bullet \bullet \bullet$	－00•
Tripotassium Phosphate	－$\bullet \bullet$	－＊••	－0．•	－	－	－	－	$\bullet \bullet \bullet$	－＊••	$\bigcirc 0 \cdot \bullet$	－＊••	－•••	$\bigcirc 00 \bullet$	－＊＊	－	－＊••	－$\bullet \bullet$
Trisodium Phosphate	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－	－	$\bullet \bullet \bullet$	${ }^{\circ} \cdot \stackrel{ }{ }$	－0••	－	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
Tung oil	$\bullet \bullet \bullet$	－0．	－．．．	－•••	－．．．	$\bullet \bullet \bullet$	－•••	－0．•	－．．．	－＊••	－．．．	$\bigcirc \bullet \bullet$	－0．0	$\bigcirc 0$.	－•••	$\bigcirc \bullet \bullet$	－00•
Turbine oil	－＊．＊		－．．•	－．．．	－．．．	－•••	－•••		$\bigcirc \bullet \bullet$	－．．•	－．．．	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	－．．．	$\bigcirc 0 \cdot$	－0．•
Turbine Oil No． 15 （MIL－L－7808A）	－＊••	$\bigcirc 0$.	－．．．	－	－．．．	－	－．．．	$\bigcirc \bigcirc \bullet$	－•••	－＊••	－．．．	－0．\bullet		－0．	－＊••		－00•
Turbo No． 10 Oil	－	－	－．．．	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－＊．•	－	${ }^{\circ} 0 \cdot$	－	－	－	－	－
Turbo oil No． 35	－•••		－．．．	－	－	－	－		－＊••	－＊＊	－＊＊	－	$\bullet \bullet \bullet$	${ }^{\circ} \cdot \bullet$	－	－00•	${ }^{\circ} 0 \bullet$
Turpentine	－•••		－＊．＊	－．．•	－．．•	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot 0$	$\bullet \bullet \bullet$	－＊••	$\bullet \bullet \bullet \bullet$	－00•	$000 \cdot$	${ }^{\circ} 0 \cdot$	－＊＊	$\bigcirc 00 \bullet$	－00•
Ucon Hydrolube J－4	$\bullet \bullet \bullet$	－＊＊•	－0．0	－	－＊••	－	－＊＊	－•＊•	－＊••	－＊••	－•••	－＊••	－00•	－＊＊＊	－＊＊	－•••	－
Ucon Lubricant 50－HB－100	－$\bullet \bullet$	－＊＊•	－＊＊	－	－	－	－	－•••	－•••	${ }^{\bullet \bullet \bullet}$	－	－•••	－	－＊＊＊	－	$\bullet \bullet \bullet$	－$\bullet \bullet$
Ucon Lubricant 50－HB－260	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－	－	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$		$\bullet \bullet \bullet$		$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$

								$\begin{aligned} & \text { 岂 } \\ & \text { OU } \\ & \text { 位 } \end{aligned}$				岂 品 응 온					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Ucon Lubricant 50－HB－5100	－•••	－＊••	－．．•	－	－	－	－	－•••	－•••	－•••	－	－•••	－	－＊＊•	－	$\bullet \bullet \bullet$	－•••
Ucon Lubricant 50－H8－55	－＊．•	－．．•	－．．○	－	－	－	－	－＊．•	－．．•	－＊．＊	－	－$\bullet \bullet$	－	－＊．•	－	－•••	－$\bullet \bullet$
Ucon Lubricant 50－HB－660	－•••	－•••	－．．•	－	－	－	－	－•••	－．．．	－•••	－	－•••	－	－•••	－	－•••	－•••
Ucon Lubricant LB－1145	－＊．•	－•••	－．．．	－	－	－	－	－＊＊＊	－．．．	－•••	－	－•••	－	－＊＊＊	－	－•••	－．．．•
Ucon Lubricant LB－135	－•••	－．．．	－．．．	－	－	－	－	－．．．	－．．．	－．．．	－	－•••	－	－．．．	－	－•••	－•••
Ucon Lubricant LB－285	－．．．	－．．•	－．．．	－	－	－	－	－．．．	－．．．	－．．．	－	－•••	－	－．．．	－	－＊．＊	－．．．
Ucon Lubricant LB－3005	－•••	－•••	－．．•	－	－	－	－	－＊．＊	－．．•	－•••	－	－•••	－	－．．•	－	－•••	－•••
Ucon Lubricant LB－625	－•••	－．．．	－．．•	－	－	－	－	－．．•	－．．．	－．．．	－	－•••	－	－．．．	－	－•••	－．．．．
Ucon Lubricant LB－65	－•••	－•••	－．．．	－	－	－	－	－•••	－．．．	－＊．＊	－	－•••	$\bigcirc 0 \cdot$－	－＊．•	－	－•••	－＊••
Ucon oil 50 HB－2805	－＊．•	－．．．	－	－	－	－	－	－＊．•	－．．．	－．．	－	－•••	－	－．．•	－•••	－•••	－•••
Ucon Oil Heat Transfer Fluid	－•••	－．．．	－	－	－	－	－	－•••	－．．•	－．．．	－	－•••	－	－．．•	－	－•••	－•••
Ucon oil LB－385	－．．．	－•••	$\bigcirc 0$.	－	－．．．	－	－•••	－＊．．	－．．．	－＊．．	－．．．	－．．．•	－＊．．	－．．．	－•••	－•••	－．．．•
Ucon oil Lb－400	－．．．	－•••	$\bigcirc 0 \cdot$	－	－．．．	－	$\bullet \bullet \bullet$	－•••	－．．．	－．．．	－．．．	－•••	$\bigcirc \bullet \bullet$	－•••	－•••	－•••	－$\bullet \bullet$
UDMH（Unsymmetrical Dimethyl Hydrazine）	－＊．＊	－．．•	$\bigcirc 0 \cdot$	$\bigcirc 0$.	$\bigcirc 00$	－0．	－00•	－00•	－0．	－哈•	－．．．	－＊•	－00•	－00•	－0．•	－•••	－•••
Univis 40 Hydraulic Fluid	－•••	$\bigcirc 00 \cdot$	－0．	－•••	－．．．	－•••	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$	－．．•	－•••	－．．．	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	－•••	$\bigcirc 0 \cdot$－	－00•
Univolt No． 35 （Mineral Oil）	－．．．	－0．	－．．．	－．．．	－．．．	－•••	－．．．	$\bigcirc 0 \cdot$	－．．．	－．．．	－．．．	－＊•	－•••	$\bigcirc 0 \cdot$	－•••	$\bigcirc \bigcirc$	－00•
UPDI（Ultra Pure Deionized Water）	－	$\bigcirc \bullet \bullet$	－＊•	－．．•	－．．．	－•••	$\bullet \bullet$.	－	－	－	－．．•	－	－	－	$\bullet \bullet \cdot$	－	－
Uric Acid	－	－	－	－		．	－	－	－	－0．•	－．．．	－	－	－	－	－	－
Urine	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet \bullet$	－	－	－	－	－	－	－	－	$\bigcirc 0 \cdot$－	－	－	－	－	－00•
Valeraldehyde	－	－	－	－	－	－	－	－	－	－०．॰	－．．．	－	－	－	－	－	－
Valeric Acid	$\bullet \bullet \bullet$	－•••	－•••	－•••	－•••	$\bullet \bullet$	$\bullet \bullet \bullet$	－	－	$\bigcirc 0 \cdot \bullet$	－．．．	－0．	－	－	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Vanadium Oxide	－	－	－	－	－	－	－	－	－	－．．．	－	－	－	－	－	－	－
Vanadium Pentoxide	－	－	－	－	－	－	－	－	－	－•••	－．．．	－	－	－	－	－	－
Varnish	－＊••	－0．•	－＊••	－．．．	－．．．	－•••	$\bullet \bullet \bullet$	－0．0	－．．．	－．．．	－．．．	－00•	$\bullet \bullet \bullet$		－．．．		－00•
Vegetable oils	－＊＊＊	$\bigcirc{ }^{\circ} \bullet$	－＊＊•	－＊＊＊	－＊＊＊	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－＊＊＊	－＊＊＊	－＊＊＊	－•••	$\bullet \bullet \bullet \bullet$	${ }^{\circ} 00$	$\bullet \bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	${ }^{0} 0 \bullet$
Versilube F44，F50，F55	－＊．．	－•••	－．．．	－．．．	－．．．	－•••	－•••	－0．＊	－．．．	－．．．	－．．．	－．．．	－•••	－•••	－•••	－•••	－．．．
Vinegar	－＊．	－•••	－•••	－．．．	－．．．	－•••	－•••	－0．\bullet	－0．•	－＊．．	－．．．	－＊•	$\bigcirc 00 \cdot$	－＊．	$\bullet \bullet \bullet$	－•••	－＊••
Vinyl Acetate	$\bigcirc 0 \cdot$	－••	$\bigcirc 0 \cdot$－	－00•	$\bigcirc 00 \cdot$	$00 \cdot$	$\bigcirc 00 \cdot$	$\bigcirc 00 \cdot$	－	$\bigcirc 00 \cdot$	－＊．•	$00 \cdot$	$\bigcirc 00 \cdot$	$\bigcirc 00 \cdot$	－0．•	$\bullet \bullet \bullet$	－00•

												$\begin{aligned} & \text { 岂 } \\ & \text { 营 } \\ & \text { 음 } \\ & \text { 롱 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
Vinyl Benzene	－00•	\bigcirc	－	－	－	－	－	$\bigcirc 00 \bullet$	－0．•	－00•	－	－00•	－0••	$\bigcirc 0 \cdot$－	－	$\bigcirc 00 \cdot$	－00•
Vinyl Bromide	－	－	－	－	－	－	－	－	－	－	－	$\bullet \bullet \bullet$	－	－	－	$\stackrel{\bullet \bullet}{ }$	－
Vinyl Chloride	$\bigcirc 00 \bullet$	$\bigcirc 0 \cdot$－	－＊••	－＊••	－•••	－＊＊	$\bullet \bullet \bullet$	－	－	－＊•	－•••	$\bigcirc 00 \cdot$	－	－	－0••	$\bigcirc 00 \cdot$	－00•
Vinyl Cyanide	－00•	$\bigcirc 0 \cdot$－	－0．•	－	－	－	－	$\bigcirc 00 \cdot$	$\bigcirc 0 \cdot$	$\bigcirc 00 \cdot$	－•••	－＊••	$\bigcirc 0 \cdot$－	००••	－	$\bigcirc 0 \cdot$	－＊••
Vinyl Ether	$\bigcirc \bullet \bullet$	－	－0．\bullet	－	－	－	－	－	－	－	－	－	－	－	－	－0．	－00•
Vinyl Fluoride	－	－	$\bigcirc \cdot \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－＊•	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	$\stackrel{\bullet \bullet}{ }$	－
Vinyl Oxide	$\bullet \bullet \bullet$	－	－0．\bullet	－	．	－	－	－	－	－	－	－	－	－	－	－0．	－0．•
Vinyl Toluene	－0．	－	－．．．	－	－	－	－	－	－	－	－	－	－	－	－	－0．	－००•
Vinylidene Chloride	${ }^{\circ}$－	－•••	－•••	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	${ }^{\circ} \stackrel{0}{ }$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	${ }^{\circ} \stackrel{0}{ }$	${ }^{\circ} \bullet \bullet$	－	－＊－	${ }^{\circ} 0 \bullet$
Vitriol（White）	－	－	－	－	－	．	－	－	－	$\bigcirc \bigcirc \bullet$	－	－	－	－	－	－	－
W－H－910	－0••	－•••	$\bullet \bullet \bullet$	$\stackrel{\bullet \bullet}{ }$	$\bullet \bullet \bullet$	－••	$\bullet \bullet \bullet$	$\bullet \bullet \cdot$	$\bigcirc 0 \cdot \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－＊••				
Wagner 21B Brake Fluid	－0．•	－•••	$\bigcirc 0$.	－0．•	－0．•	－0．	००••	－0．•	－0．\bullet	－0．•	－．．．	－＊•	－00•	$\bullet \bullet \bullet$	－•••	${ }^{\bullet \bullet} \cdot$	－＊••
Water	－•••	－•••	－＊••	－•••	－•••	$\bullet \bullet \bullet$	－•••	－＊．•	－•••	－．．．	－．．．	－＊•	$\bullet \bullet \bullet$	－＊•	－．．．	－•••	－•••
Wax	－•••	－．．•	－．．．	－	－	－	－	$\bullet \bullet \bullet$	－	－	－	－•••	－．．•	－	－	－0．	－00•
Wemco C	－•••	$\bigcirc 00 \cdot$	－•••	－＊＊	－＊••	－＊＊	$\bullet \bullet \bullet \bullet$	－00•	－•••	－•••	$\bullet \bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet$	－00•	－＊＊	$\bigcirc 00 \cdot$	－00•
Whiskey \＆Wines	$\bullet \bullet \bullet$	－•••	－＊＊	－＊＊	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－$\cdot \bullet$	－＊••	$\bullet \bullet \bullet$	－0••	－0．	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
White Liquor	－•••	－•••	－．．．	－．．•	－•••	－•••	－•••	－	－	－．．．	－	－•••	－	－	－•••	－	$\bullet \bullet . \bullet$
White oil	－•••	$\bigcirc 00$－	－．．．	－．．．	－．．．	－•••	－．．．		－．．．	－．．．	－．．．	－．．•	$\bullet \bullet \cdot$		－．．．	－0．	－00•
White Pine oil	－＊••	$\bigcirc 0 \cdot \bullet$	－＊＊	－＊＊	－•••	－＊＊	$\bullet \bullet \bullet \bullet$	$\bigcirc 0 \cdot$ •	－＊＊	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－0．	－	${ }^{\circ} 0 \cdot 0$	$\bullet \bullet \bullet \bullet$	$\bigcirc 0 \cdot$－	${ }^{\circ} 0 \cdot$
Wolmar Salts	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet \bullet$	－＊＊	－＊••	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet \bullet$	－＊••	－＊••	$\bullet \bullet \bullet$	－＊•	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	－•••	－＊••
Wood Alcohol	－•••	－．．．	$\bigcirc 0 \cdot$	$\bigcirc \bullet \bullet$	－•••	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet$	－•••	－＊••	－．．．	－	－0．	$\bigcirc 0 \cdot$－	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$
Wood oil	－•••	$\bigcirc 0 \cdot$	－	－	－	－	－	－0．	－＊．．	－．．．	－•••	－•••	－0．•	－0．\bullet	－	－0．	－0．•
Xenon	－•••	－．．•	－•••	－．．•	－•••	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	－．．•	－＊＊	－•••	－•••	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet \bullet$	－•••	－•••
Xylene	－0．•	－0．\bullet	$\bigcirc \bullet \bullet$	－•••	－•••	－＊••	$\bullet \bullet \bullet$	$\bigcirc 0$.	－•••	－0．	$\bullet \bullet \bullet$	－0．${ }^{\circ}$	－0．\bullet	－००－	－००	－00•	－00•
Xylidenes Mixed Aromatic Amines	－	－	$\bigcirc 0 \cdot$－	－0．	－0••	${ }^{\circ} \bullet$	${ }^{\circ} \stackrel{\bullet}{ }$	－	－	－0••	－	－	－	－	－	－	－
Xylidine	－0••		－0．	－	－•••	－	－•••	${ }^{\circ} 0 \cdot$		$\bigcirc{ }^{\circ} \bullet$	$\bullet \bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \bullet$	－0••	－＊••	－＊••	${ }^{\circ} 0 \bullet$
Xylol	－00•	－0．	－＊＊	－＊．•	－•••	－＊＊	－•••	${ }^{\circ} 0 \cdot 0$	－•••	$\bigcirc 0 \cdot$－	－•••	${ }^{000}$	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$	－00•	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$
Yeast	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	－	－	－	－	$\bullet \bullet \bullet$	－	－	－	$\bullet \bullet \bullet$	$\bigcirc \bullet \bullet$	－	－	${ }^{\bullet \bullet \bullet}$	－

								$\begin{aligned} & \text { 岂 } \\ & \text { U } \\ & \text { ज } \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { O} \\ & \text { 訁 } \\ & \text { O} \\ & 0 \\ & \vec{Z} \end{aligned}$			$\begin{aligned} & \text { 岂 } \\ & \text { 品 } \\ & \text { 응 } \\ & \text { 롱 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
zeolites	－＊••	－＊＊	－•••	－•••	－•••	－•••	－•••	－	－＊••	－•••	－＊．•	－•••	－	－•••	－＊＊	－•••	－•••
Zinc Acetate	$\bigcirc \bullet \bullet$	－•••	$\bigcirc 00$－	$\bigcirc 00$－	－0．	$\bigcirc 00 \cdot$	－0．	－००＊	－0．	－＊••	－＊．•	$\bigcirc \bullet \bullet$	－00•	$\bigcirc 00 \cdot$	－0．•	$\bullet \bullet \bullet$	－$\bullet \bullet$
Zinc Ammonium Chloride	－	－	－0．0	$\bigcirc 0 \cdot \bullet$	－＊＊	$\bigcirc 0 \cdot \bullet$	$\bigcirc \bullet \bullet$	－	－	－•••	－＊••	－	－	－	－	－	－
Zinc Chloride	－•••	－$\cdot \bullet$	－．．•	－．．•	－．．．	－$\cdot \bullet$	－•••	－•••	－•••	－．．．	－．．•	－＊•	－•••	－＊＊	－•••	－•••	－•••
Zinc Chromate	－	－	－0．•	－0．0	－＊．	－0．•	－＊．＊	－	－	－0．0	－•••	．	－	－	－	－•••	－
Zinc Cyanide	－	－	－0．•	－0．•	－＊••	$\bigcirc 0 \cdot \bullet$	$\bigcirc \bullet \bullet$	－	－	－0．•	－＊．•	－	－	－	－	－	－
Zinc Diethyldithiocarbamate	－	－	－0．•	－0．•	－0．•	－0．•	－0．•	－	－	－0．•	－•••	－	－	－	－	－	－
Zinc Dihydrogen Phosphate	－0．•	－．．．	－0．•	－	－	－	－	－••	－•••	－0．•	－•••	－•••	－00•	－•••	－	－•••	－
Zinc Hydrosulfite	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－•••	－•••	－＊•	－0．•	$\bigcirc \bullet \bullet$	－	－	－•••	－$\cdot \bullet$	$\bullet \bullet \bullet$	－	－	－	－	－
Zinc Nitrate	－	．	－．．．	－．．•	－．．．	－．．•	－•••	－	－	－．．．	－．．．		－	－	－	－	－
Zinc Oxide	－	－	－•••	－．．•	－．．．	－•••	－•••	－	－	－	－．．．	$\bullet \bullet \bullet$	－	－	－	－	－
Zinc Phenosulonate	－	－	－0．•	－0．•	－0．•	－0．•	－0．•	－	－	－0．•	－•••	－	－	－	－	－	－
Zinc Phosphate	－	－	$\bullet \bullet \bullet \bullet$	－	－＊••	－	$\bullet \bullet \bullet$	－	－	－＊••		－	－	－	－	－	－
Zinc Salts	$\bullet \bullet \bullet$	－．．॰	－．．．	－•••	－．．．	$\bullet \bullet$.	－•••	$\bullet \bullet \bullet$	－•••	－．．．	－．．．	$\bullet \bullet$.	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Zinc Stearate	－	－	－0．•	－0．0	－听	－0．•	－0．•	－	－	－0．•	－＊••	－	－	－	－	－	－
Zinc Sulfate	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－$\bullet \bullet$	－．．•	－．．．	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－．．．	－．．．	$\bullet \bullet \bullet$	－＊•	－＊••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
Zinc Sulfide	－	－	－0．0	－0．0	－＊．	－0．＊	$\bigcirc 0 \cdot \bullet$	－	－	－0．0	－$\cdot \bullet$	－	－	－	－	－	－
Zinc Sulphate	－•••	－．．．	－．．．	－	－	．	－	－•••	－•••	－•••	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－＊••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
zinc Vitriol	$\bullet \bullet \bullet$	－．．．	－．．．	－	－	－	－	$\bullet \bullet \bullet$	－	－	－	$\bullet \bullet \bullet$	－	－	－	$\bullet \bullet \bullet$	－$\bullet \bullet$
Zirconium Nitrate	－	－	－．．．	－．．•	－．．．	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－．．．	－•••	－	－	－	－	－	－
MIL－L－644B	－•••	－0．0	－	－	－	－	－	－0••	－•••	－	－．．．	－0．•	－0••	$\bigcirc \bullet \bullet$	－	－•••	－0••
MIL－L－2104	－．．．	$\bigcirc 0$.	－	－	－	－	－	－	－	－0．•	－	$\bullet \bullet \bullet$	－	－	－	$\bigcirc 0 \cdot$－	－
MIL－L－2104B	－•••	$\bigcirc 0 \cdot$－	－•••	－	－	－	－	－००•	－＊••	－	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} \bullet$	－	－＊＊	${ }^{\circ} 0 \bullet$
MIL－L－2105B	$\bullet \bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－${ }^{\circ} \cdot$	－	－	－	－	－0••	－${ }^{\circ} \cdot$	－	－${ }^{\circ}$	$\bullet \bullet \bullet$	－＊＊＊	${ }^{\circ} 0 \cdot$	－	$\bullet \bullet \bullet$	${ }^{\circ} 00$
MIL－G－2108	－•••	－0．	－．．．	－	－	－	－	－0••	－．．．	－	－．．．	－•••	－•••	${ }^{\circ} 0 \cdot$	－	－•••	${ }^{\circ} 00$
MIL－S－31368 TYPE I	－•••	－0．	－．．．	－•••	－．．•	－．．•	－＊＊	－0．	－＊＊	－•••	－•••	－＊••	－＊＊＊	$\bigcirc 00 \cdot$	－	$\bigcirc \bullet \bullet$	－00•
MIL－S－3136B TYPE II	－＊．	$\bigcirc 0 \cdot$	－．．．	－${ }^{\circ}$	－${ }^{\bullet \bullet}$	－${ }^{\circ}$	$\bullet \bullet \bullet \bullet$	${ }^{\circ} \bullet$	－＊＊	－＊＊＊	－•••	${ }^{\circ} \stackrel{\bullet}{ }$	－＊＊	${ }^{\circ} 0 \cdot$	－	$\bigcirc \bullet \bullet$	${ }^{000}$
MIL－S－3136B TYPE III	－＊••		－•••	－•••	－•••	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－ $0 \bullet$	－•••	－•••	－•••		$\bigcirc \bullet \bullet \bullet$	${ }^{\circ} \bullet$	－	$\bigcirc \bullet \bullet$	${ }^{\circ} 0 \bullet$

								$\begin{aligned} & \text { 岂 } \\ & \text { OU } \\ & \text { ज } \end{aligned}$									
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
MIL－S－3136B TYPE IV	$\bullet \bullet \bullet$		－＊••	－•••	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－0．•	－•••	－•••	－＊••	$\bullet \bullet \bullet \bullet$	－•••	$\bigcirc \bigcirc \bigcirc$	－	$\bullet \bullet \bullet \bullet$	－00•
MLL－S－3136B TYPE V	－•••	－0．	－．．．	－	－	－	－	－0．•	－．．•	－．．॰	－＊．•	－•••	－•••	－00•	－	－•••	－००॰
MIL－S－3136B TYPE VI	－•••	$\bigcirc 0 \cdot$	－•••	－	－	－	－	－0．•	－．．•	－	－	$\bigcirc 0 \cdot$－	－＊••	－00•	－	－＊••	－00•
MIL－S－3136B TYPE VII	－•••	－0．	－•••	－	－	－	－	$\bigcirc 00 \cdot$	－．．．	－＊．•	－•••	$\bigcirc 0 \cdot \bullet$	－0．•	－00•	－	－0．•	－00•
MIL－L－3150A	－•••		－•••	－	－	－	－	$\bigcirc 0 \cdot$－	－．．．	－	－．．．	－•••	－＊••	$\bigcirc 00 \cdot$	－	－•••	－00•
MIL－G－3278	－．．．		－．．．	－	－	－	－	$\bigcirc 0 \cdot$	－	－	－	－0．	－＊．•	$\bigcirc 0 \cdot$－	－	－＊．•	－0．•
MIL－L－3503	－•••	$\bigcirc 0 \cdot$	－＊．•	－	－	－	－	$\bigcirc 0 \cdot$	－＊＊＊	－	－＊．•	－＊．•	－＊••	$\bigcirc 0 \cdot \bullet$	－	－＊＊	$\bigcirc 0 \cdot \bullet$
MIL－L－3545B	－．．．	－0．	－．．．	－	－	－	－	$\bigcirc 0$.	－．．．	－	－•••	－．．．	－＊．		－	－＊．	－००•
MIL－L－4339C	－•••	$\bigcirc 0 \cdot$－	－•••	－	－	－	－	－0．•	－．．．	－	－．．．	$\bigcirc 00 \cdot$	${ }^{\circ} 0.0$	$\bigcirc 0 \cdot$－	－	－	－००॰
MIL－G－4343B	－•••	－＊•	－．．．	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－＊．＊	－＊•	－．．．	－•••	－•••	$\bullet \bullet \bullet$	－	－•••	－०••
MIL－L－5020A	－•••	$\bigcirc 0$.	－•••	－	－	－	－	$\bigcirc 0$.	－．．．	－	－．．．	－•••	－＊．＊		－	－＊．．	－0．•
MIL－J－5161F	－•••	－0．	－．．．	－	－	－	－	－0．	－．．．	－	－．．．	－0．	－＊．•	－००－	－	－㒳	－0．•
MIL－C－5545A	－•••	$\bigcirc 0 \cdot$	－．．•	－	－	－	－	$\bigcirc 00 \cdot$	－．．．	－	－．．．	－＊••	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$－	－	－0．0	－00•
MIL－M－5559A	－•••	－．．．	－．．．	－	－	－	－	－＊．•	－．．．	－	－．．．	－＊．•	－0．•	$\bullet \bullet \bullet$	－	－0．•	－．．．
MIL－F－5566	－．．．	－．．．	－．．．	－	－	－	－	－•••	－．．．	－	－．．．	－＊．	－00•	－＊•	－	－	－•••
MIL－G－5572	－•••	$\bigcirc 00$	－．．．	－	－	－	－	－0．	－	－	－	－00•	－＊••	－0．	－	－＊••	$\bigcirc 00$
MIL－F－5602	－•••	－0．	－．．．	－	－	－	－	－0．•	－•••	－	－•••	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot$－	－	－＊＊	－00•
MLL－0－5606	－•••	－	－．．．	－	－	－	－	$\bigcirc 0 \cdot$－	－	－	－		－0．•	－	－	－0．•	－
MLL－H－5606B（Red oil）	－•••	－＊•	－．．．	－	－	－	－	$\bigcirc 0 \cdot$ •	－．．．	－．．．	－．．•	－＊••	－＊•	$\bigcirc 00 \bullet$	－	－＊．	－0．•
MIL－J－5624G（JP3）	－•••	$\bigcirc 0 \cdot$	－．．．	－	－．．．	－	－•••		－．．．	－．．．	$\bullet \bullet . \bullet$	－0．	－＊••	$\bigcirc \bigcirc \bigcirc$	－＊．．	－＊．•	－००॰
MIL－J－5624G（JP4）	－•••	$\bigcirc 0 \cdot$－	－•••	－	－．．．	－	－•••	$\bigcirc 0 \cdot$		－•••	－．．．	$\bigcirc 0 \cdot$	－0．•	$\bigcirc 0 \cdot \bullet$	－＊．．	－＊．	－0．•
MIL－J－5624G（JP5）	－•••	$\bigcirc 0 \cdot$	－．．．	－	－．．．	－	－•••	$\bigcirc 0 \cdot \bullet$	－．．．	－•••	－•••	$\bigcirc 0 \cdot$－	－＊．•	－0．\bullet	－．．．	－＊．	${ }^{\circ} \mathrm{o}$－
MIL－0－6081C	－•••	－	－	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－．．．	－	－•••	$\bigcirc \bullet \bullet$	－＊．＊	$\bigcirc \bigcirc \bullet$	－	${ }^{\circ} 0 \cdot$	${ }^{\circ} 0 \cdot$
MIL－L－6082C	－•••	$\bigcirc 00$－	－	－	－	－	－	$\bigcirc \bigcirc \bullet$	－．．．	－	－．．．	－＊．＊	－．．．	$\bigcirc 0 \cdot \stackrel{ }{ }$	－		－0．•
MIL－H－6083C	－•••	$\bigcirc 0 \cdot$	－	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－．．•	－	－．．•	－•••	－＊＊	$\bigcirc 0 \cdot$	－	${ }^{\circ} 0 \cdot$	－00•
MIL－L－6085A	－＊．	$\bigcirc 0 \cdot$	－	－	－	－	－	－0．•	－．．．	－＊•	－．．．	$000 \cdot$	－0．0	$000 \cdot$	－＊．．	－0．•	－00•
MIL－L－6086B	－•••	$\bigcirc 0 \cdot$－	－	－	－	－	－	－0．•	－．．．	－	－．．．	$\bullet \bullet \bullet$	－•••	－00•	－	$00 \cdot$－	${ }^{\circ} \bullet$
MIL－L－6087A	$\bullet \bullet \bullet$	${ }^{\circ} \bullet$ •	－	－	－	－	－	－0••	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－	$\stackrel{\bullet \bullet}{ }$		－	－＊••	${ }^{\circ}$－

								$\begin{aligned} & \text { 岂 } \\ & \text { OU } \\ & \text { 位 } \end{aligned}$				$\begin{aligned} & \text { 岂 } \\ & \text { 品 } \\ & \text { 응 } \\ & \text { 롤 } \end{aligned}$					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
MIL－A－6091	－•••	－•••	－•••	－	－	－	－	－•••	－•••	－	－	－•••	－00•	－•••	－	$\bullet \bullet \bullet$	－•••
MIL－L－6387A	$\bullet \bullet \bullet$	$\bigcirc 0$.	－	－	－	－	－	－0••	－．．•	－＊•	－$\bullet \bullet$	－0．\bullet	－•••	－00•	－	$\bigcirc \bullet \bullet$	－0．＾
MIL－C－6529C	－•••	${ }^{\circ}$－	－	－	－	－	－		－＊．•	－	－．．．	$\bullet \bullet \bullet$	－0••	$000 \cdot$	－	$\bigcirc 0 \cdot$－	－0．•
MIL－F－7024A	－•••		－	－	－	－	－	$\bigcirc 0 \cdot$	－•••	－	－•••	$\bigcirc 00 \bullet$	－•••	$000 \cdot$	－	$\bigcirc 00 \cdot$	－00•
MIL－H－7083A	－•••	－	－	－	－	－	－	－•••	－•••	－	－•••	－．．•	－0••	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－＊••
MIL－G－7118A	－•••	－0．	－	－	－	－	－	$\bigcirc \bullet \bullet$	－•••	－•••	－•••	$\bigcirc \bigcirc \bullet \bullet$	－0••	$\bigcirc 0 \cdot$－	－	$\bigcirc \bigcirc \bullet$	－00•
MLL－G－7187	－•••	$\bigcirc 0 \cdot \bullet$	－	－	－	－	－	－	－．．．	－．．．	－•••	$\bigcirc 0 \cdot \bullet$	－•••	$\bigcirc 0 \cdot$－	．	$\bigcirc 0 \cdot$	－00•
MIL－G－7421A	$\bullet \bullet \bullet$	－0．	－	－	－	－	－	－00•	－•••	－．．．	－•••	－०••	－．．•	－0．－	－	－0••	－००•
MIL－H－7644	－	$\bigcirc \bullet \bullet$	－	－	－	－	－	－	－	－	－$\cdot \bullet$	$\bullet \bullet \bullet$	$\bigcirc 0 \bullet$	$\bullet \bullet \bullet$	－	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$
MLL－L－7645	$\bigcirc \bullet \bullet$		－	－	－	－	－	－	－•••	－	－•••	－．．•	－0．•	－0．	－	－0．	－००॰
MIL－6－7711A	－•••	${ }^{\circ}$－	－	－	－	－	－	－	－	－•••	－．．•	－0．	－•••	－00•	－	$\bigcirc 0 \cdot$－	－00•
MIL－0－7808	－•••	－0．\bullet	－•••	－．．•	－．．．	－•••	－•••	－००－	－•••	－．．．	－•••	－0．•	－0．\bullet	－0．\bullet	－．．．	－0．	－००•
MIL－L－7808A	－＊••	$\bigcirc 0 \cdot$－	－$\cdot \bullet$	－	－．．．	－	－•••	$\bigcirc 00 \bullet$	－＊．	－．．＊	－．．•	$\bigcirc 0 \cdot \bullet$	－0．	－00•	－．．•	$\bigcirc 0 \cdot$	－0．•
MLL－L－7870A	－•••	$\bigcirc 0$.	．	－	－	－	－	－0．•	－．．．	－．．．	－．．．	－••	－0．\bullet	－0．	－	－0．	－0．•
MIL－C－8188C	－•••	$\bigcirc 00 \cdot$	－	－	－	－	－	－0••	$\bullet \bullet \bullet$	－＊．．	－．．．	－00•	－0••	${ }^{0} 0 \cdot 0$	－	${ }^{\circ} 0 \cdot$	－0．•
MIL－A－8243B	－	－．．•	－	－	－	－	－	$\bigcirc \bullet \bullet$	－．．．	－	－．．．	－•••	－0．•	－•••	－	$\bullet \bullet \bullet$	－＊••
MLL－L－8383B	－•••	$\bigcirc 00 \cdot$	－	－	－	－	－	－0••	－•••	－	－•．•	－•••	－•••	－00•	－	－00•	－00•
MIL－H－8446B	－．．•	－0．	－．．．	－．．•	－．．．	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$		－•••	－＊．	－．．．	－•••	－00•	$\bigcirc 0 \cdot$－	$\bullet \bullet \bullet$	－00•	－0．•
MIL－－8660B	－•••	－•••	－•••	－	－	－	－	$\bigcirc \bigcirc$	－．．．	－	－•••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet \bullet$
MIL－L－9000F	－•••	$\bigcirc 0$.	－	－	－	－	－	－००．	－．．．	－．．．	－．．．	－．．•	－0．•	－0．	－		－००•
MLL－T－9188B	$\bigcirc 0 \cdot \bullet$	－•••	－	－	－	－	－	$\bigcirc 0 \cdot$－	－0．•	－	－•••	－0．\bullet	${ }^{\circ} 0 \cdot$	$\bigcirc 00 \cdot$	－	$\bullet \bullet \bullet$	
MLL－L－9236B	－•••	－0．0	－	－	－	－	－	－००•	$\bullet \bullet \bullet \bullet$	－	－．．．	－0．\bullet	$\bullet \bullet \bullet$	－0••	－	$\bigcirc \bullet \bullet$	－○•॰
MLL－E－9500	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－•••	－	－	－	－	$\bullet \bullet \bullet \bullet$	－$\cdot \bullet$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－•••	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
MIL－L－10295A	$\bullet \bullet \bullet$	－	－	－	－	－	－	${ }^{\circ} \bullet \bullet$	－＊••	$\bigcirc 0 \cdot$	－．．．	$\bullet \bullet \bullet$	－•••	${ }^{\circ} 0 \cdot$	－	－00•	－
MIL－L－10324A	－•••	$\bigcirc 0 \cdot \bullet$	－	－	－	－	－	$\bigcirc \bullet \bullet$	$\bullet \bullet \bullet \bullet$	－	－．．．	－＊•	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－		${ }^{\circ} \mathrm{o} \bullet$
MIL－G－10924B	－•••	$\bigcirc 0 \cdot$	－	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－．．．	$\bullet \bullet \bullet$	－．．．	$000 \cdot$	$\bullet \bullet \bullet$	－00•	－	$\bigcirc 0 \cdot$－	${ }^{\circ} 0 \bullet$
MIL－L－1734B	－•••	－0．	－	－	－	－	－	${ }^{\circ} \bullet \bullet$	－＊••	－	－＊••	－०••	－0••	${ }^{\circ} 0 \cdot$	－	$\bigcirc \bullet \bullet$	${ }^{\circ} 0 \bullet$
MIL－0－11773	－•••	${ }^{\circ} \bullet$ •	－	－	－	－	－		－•••	－	－•••	－०••	－0••	${ }^{\circ}$－	－	$\bigcirc \bullet \bullet$	${ }^{00}$ •

		$\begin{aligned} & \text { 岂 } \\ & \text { 岂 } \\ & \text { O} \\ & \text { ㅁ } \\ & \text { 山己 } \\ & \text { 로 } \\ & \text { ㄹ } \end{aligned}$				FLUOROCARBON TYPE GLT		$\begin{aligned} & \text { 岂 } \\ & \text { OU } \\ & \text { जn } \end{aligned}$	$\begin{aligned} & \text { 岂 } \\ & \text { O} \\ & \text { ה } \\ & \text { O} \\ & 0 \\ & \vec{y} \end{aligned}$			岂 哭 응 돈					
CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
MIL－P－12098	－•••	－•••	－	－	－	－	－	－00•	－	－	－•••	－＊••	－0．•	－•••	－	－＊••	－＊••
MIL－H－13862	$\bullet \bullet \bullet$	${ }^{\circ}$－	－	－	－	－	－	－○••	－＊••	－	－•••	－＊＊॰	－＊••	$\bigcirc 0 \cdot \bullet$	－	$\bigcirc 0 \cdot$－	
MIL－H－13866A	－•••		－	－	－	－	－	$\bigcirc \bigcirc \bullet$	－$\bullet \bullet$	－	－•••	－＊•	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot \bullet$	－	－0．	－00•
MLL－H－13910B	－•••	－$\cdot \bullet$	－	－	－	－	－	－00•	－＊••	－•••	－＊＊	－•••	－0．0	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－＊••
MIL－H－13919A	－•••	$\bigcirc 0 \cdot \bullet$	－	－	－	－	－	$\bigcirc \bigcirc \bullet$	－＊．•	－	－•••	－．．．	$\bigcirc \bullet \bullet$	$\bigcirc 00 \bullet$	－	$\bigcirc 0 \cdot$－	$\bigcirc 0 \cdot \bullet$
MIL－L－14107B	－0．•	$\bigcirc 0 \cdot$	－	－	．	－	－	$\bigcirc \bigcirc \bigcirc$	－．．．	－	－．．．	－•••	－	$\bigcirc \bigcirc \bigcirc$	－	$\bigcirc 0 \cdot$	－00•
MIL－L－15016	－•••	$\bigcirc 0 \cdot$	$\bullet \bullet \bullet$	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－＊••	$\bullet \bullet \cdot \bullet$	－	$\bigcirc \bullet \bullet$	$\bullet \bullet \cdot \bullet$	$\bigcirc 0 \cdot \bullet$	－	－00•	$\bullet \bullet \bullet$
MLL－L－15017	－•••	－0．•	－	－	－	－	－	－0．•	－．．．	－．．•	－•••	－＊．＊	－＊．•	－0．\bullet	－	－0．	－0．•
MIL－L－15018B	－•••	$\bigcirc 0 \cdot$	－	－	－	－	－	○○••	－	－	－．．．	－•••	－•••	$\bigcirc \bigcirc \bullet$	－	$\bigcirc 0 \cdot$	－००॰
MIL－L－15019A	－•••	$\bigcirc 0 \cdot$	－•••	－	－	－	－	$\bigcirc \bigcirc \bullet$	－．．•	－	－	－．．．	－•••	$\bigcirc \bigcirc$	－	$\bigcirc 0 \cdot$	－००•
MIL－L－15719A	$\stackrel{\bullet \bullet}{ }$	－＊．	－	－	－	－	－	－．．．	－	－	－•••	$\bigcirc \bullet \bullet \bullet$	－0．	$\stackrel{\bullet \bullet}{ }$	－	$\bullet \bullet \bullet$	－०••
MIL－G－15793	－•••	－0．•	－	－	－	－	－	－०••	－．．•	－．．•	－＊••	－．．．	－0．•	－0．•	－	－0．•	－0．•
MIL－F－16884	－•••	$\bigcirc 0 \cdot$－	－．．•	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－．．．	－•••	－	००••	$\bigcirc 0 \bullet$	$\bigcirc 0 \cdot \bullet$	－	$\bigcirc 0 \cdot$	$\bigcirc 0 \cdot \bullet$
MIL－F－16929	－•••	$\bigcirc 0 \cdot$	－	－	－	－	－	－$\bullet \bullet$	－．．＊	－	－•••	－0．0	－0．•	－0．\bullet	－	－0．•	－ $0 \cdot$
MIL－L－16958A	－•••	$\bigcirc 0 \cdot$	－	－	－	－	－	－0••	－．．．	－	－•••	－＊＊	$\bigcirc \bullet \bullet$	$\bigcirc 0 \cdot \bullet$	－	$\bigcirc 0 \cdot$－	－00•
MLL－F－171ו1	－•••	－0．	－	－	－	－	－	－0．•	－．．．	－．．．	－．．．	－．．．	－＊．•	$\bigcirc 0 \cdot$－	－	$\bigcirc 00$	$\bigcirc 00$－
MIL－L－17331D	－•••		－	－	－	－	－	$\bigcirc \bullet \bullet$	－．．．	－．．．	－•••	－．．．	－＊．•	$\bigcirc 0 \cdot \bullet$	－	$\bigcirc 0 \cdot$－	${ }^{\circ} 0 \bullet$
MIL－L－17353A	－•••	$\bigcirc 00$	－	－	－	－	－	$\bigcirc \bigcirc \bullet$	－．．．	－	－•••	－0．0	－＊．＊	$\bigcirc \bigcirc \bigcirc$	－	－0．	－0．＾
MIL－L－17672B	－•••	$\bigcirc 0 \cdot$－	－	－	－	－	－	－0••	－．．．	－	－•••	－•••	－•••	$\bigcirc 00 \bullet$	－	$\bigcirc 0 \cdot$－	－00•
MIL－L－18486A	－•••	$\bigcirc 0 \cdot$	－	－	－	－	－	$\bigcirc \bigcirc \bullet$	－．．．	－	－•••	－．．．	－．．．	$\bigcirc \bigcirc \bigcirc$	－	${ }^{\circ}$－	－००॰
MLL－G－18709A	－•••	${ }^{\circ}$－	－	－	－	－	－	$\bigcirc \bigcirc \bullet$	－•••	－	－•••	－•••	－•••	－0．\bullet	－	${ }^{\circ} 0 \cdot$	${ }^{\circ} \mathrm{O} \bullet$
MIL－H－19457B	－0．0	－•••	－	－	－	－	－	$\bigcirc \bigcirc \bullet$	－0．0	－•••	－•••	－00•	－0．	－0．\bullet	－	$\bullet \bullet \bullet$	－0．•
MIL－F－19605	－•••		－	－	－	－	－	$\bigcirc 0 \cdot$	－．．•	－	－•••	－0••	$\bigcirc 0 \cdot \bullet$	$\bigcirc 0 \cdot$－	－	$\bigcirc 0 \cdot$	－00•
MIL－L－19701	－•••	$\bigcirc 0 \cdot$	－	－	－	－	－	$\bigcirc \bullet \bullet$	－．．．	－	－•••	－0．0	－0．0	$\bigcirc 0 \cdot \stackrel{ }{ }$	－	－०．॰	－००－
MIL－L－21260	－•••	$\bigcirc 0 \cdot$－	－	－	－	－	－	$\bigcirc \bullet \bullet$	－．．．	－•••	－•••	－．．．	$\bullet \bullet \bullet$	－0．\bullet	－	${ }^{\circ} 0 \cdot 0$	${ }^{\circ} 0 \cdot$
MIL－S－21568A	－•••	－$\bullet \bullet$	－	－	－	－	－	${ }^{\circ} 0 \cdot 0$	－＊＊	－•••	$\bullet \bullet \bullet$	－$\bullet \bullet$	－	$\bullet \bullet \bullet$	－	－•••	－＊．•
MIL－H－22072	－•••	－．．．	－	－	－	－	－	－＊•	－＊•	－	－•••	－＊．•	－•••	－•••	－	－•••	－＊．．
MIL－H－22251	－＊••	－•••	－•••	－	－	－	－	－0．•	－•••	－＊•	－	－＊••	－	－••	－	－•••	－

CHEMICAL NAME	NBR	EPDM	FKM－A	FKM－B	FKM－F	GLT	GFLT	VMQ	FVMQ	HNBR	FFKM	CR	PU	SBR	TFE／P	IIR	NR
MIL－L－22396A	－•••	$\bigcirc \bigcirc$	－	－	－	－	－	$\bigcirc \bullet \bullet$	－•••	－	－＊．•	－•••	－•••	$\bigcirc 0 \bullet$	－	$\bigcirc 0 \cdot$	－00•
MIL－G－23827A	$\bullet \bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－	－	－	－	－	$\bigcirc \bullet \bullet$	－＊••	－	－＊．•	－0••	$\bigcirc \bigcirc \bullet$	$\bigcirc 00 \cdot$	－	००••	－00•
MIL－G－25013D	$\bullet \bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	－	－	－	－	${ }^{\circ} 0 \cdot 0$	$\bigcirc \bullet \bullet$	－＊••	－＊••	$\bigcirc \bullet \bullet$	－0••	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	－＊•
MIL－F－25172	－＊••	－००	－	－	－	－	－	－००	－＊．•	－	－．．．	－0．•	－0．\bullet	－00•	－	－0．	－00•
MIL－L－25336B	－．．．•		－	－	－	－	－	－＊•	－．．．	－	－．．．	－0．•	－०••	$\bigcirc 0 \cdot$	－	－०．•	－00•
MIL－F－25524A	－．．．	$\bigcirc \bigcirc$	－•••	－	－	－	－	$\bigcirc 0 \cdot$	－．．．•	－	－	－0．•		$\bigcirc 0 \cdot$	－	$\bigcirc 0 \cdot$	－00•
MIL－G－25537A	－•••		－	－	－	－	－	\bigcirc－＊	－．．．	－＊．•	－．．．	－＊•	$\bigcirc \bullet \bullet$	$\bigcirc 00 \cdot$	－	$\bigcirc 0 \cdot$－	－00•
MIL－F－25558B（RJ－1）	－•••	－००	－．．•	－．．．	－．．．	$\bullet \bullet \bullet$	－•••	－०••	－．．．	－．．．	－．．．	－•••	－•••	－0．	－．．．	－0．	－००॰
MIL－F－25576C（RP－1）	－．．．•	－	－．．．	－．．．	－．．．	－•••	－•••	$\bigcirc 0 \cdot$－	－．．．	－．．．	－．．．	－＊．•	－•••	$\bigcirc 0 \cdot$－	－		－0．•
MIL－H－25598	－．．．		－	－	－		－	－๑••	－．．．	－	－．．．	－＊••	－．．．	$\bigcirc \bigcirc \bullet$	－		－0．•
MIL－F－25656B（JP－6）	$\bullet \bullet \bullet \bullet$		－	－	－	－	－	$\bigcirc 0$.	－•••	$\bullet \bullet \bullet$	－．．．	－0．\bullet	－०••	－00•	－	$\bigcirc 0 \cdot$	－00•
MIL－L－25681C	－•••	－•••	－	－	－	－	－	－००	－＊．＊	－＊．•	－．．．	－＊•	－0．•	－＊．•	－	$\bullet \bullet \bullet$	－．．．
MIL－G－25760A	－•••	－0．	－	－	－	－	－	$\bigcirc 00 \cdot$	－．．＊	－＊．＊	－．．．	－•••	－．．•	－0．0	－	$\bigcirc 0 \cdot$	${ }^{\circ} \bullet \bullet$
MIL－L－25968	－．．．	－००．	－	－	－	－	－	$\bigcirc \bullet \bullet$	－．．．	－	－．．．	$\bigcirc 0 \bullet \bullet$	$\bigcirc \bigcirc \bullet$	$\bigcirc 0 \cdot$－	－	$\bigcirc 0 \cdot$	${ }^{\circ} 0 \cdot$
MIL－L－26087A	$\bullet \bullet \bullet \bullet$	－00•	－	－	－	－	－	－0••	－•••	－	－．．．	－•••	－•••	－00•	－	$\bigcirc 0 \cdot$	－00•
MIL－G－27343	－．．．	－．．．	－	－	－	－	－		－．．．	－	－．．．	－•••	－•••	－．．•	－．．．	－	$\bullet \bullet \bullet$
MIL－P－27402	－＊．＊	－•••	－	－	－	－	－	$\bigcirc 0 \cdot$	－	－＊．•	－	－．．．	－	－＊．•	－	－•••	－
MIL－H－27601A	－＊．＊	－००．	－	－	－	－	－	$\bigcirc \bigcirc \cdot$	－．．．	－．．．	－．．．	－＊•	－0．•	$\bigcirc 0 \cdot 1$	－	－0．	－00•
MIL－G－27617	－00•	－•••	－	－	－	－	－	${ }^{\circ} 0 \cdot 0$	－．．．	－	－．．•	－	－	－＊＊	－	－•••	－
MIL－－－27686D	－•••	－•••	－	－	－	－	－	－＊••	－．．．	－	－．．．	－•••	－0．•	－．．．	－	－＊＊	－．．．
MIL－L－27694A	－•••	－•••	－	－	－	－	－	$\bigcirc \bigcirc$	$\bullet \bullet \bullet \bullet$	－	－$\cdot \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
MIL－L－46000A	－•••	－0．	－	－	－	－	－	$\bigcirc \bigcirc \bullet$	－．．．	－	－．．．	－0．0	－0．0	－0．\bullet	－	$\bigcirc \bigcirc \bullet$	－00•
MIL－H－46001A	－•••		－	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－．．•	－	－．．•	－•••	－•••	$\bigcirc 0 \cdot$	－	$\bigcirc 0 \cdot$	－00•
MIL－46002	－•••		－	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－．．．	－	－．．．	－•••	－•••	$\bigcirc 0 \cdot$	－	$\bigcirc 0 \cdot$	－00•
MIL－H－46004	－．．．	－0．	－	－	－	－	－	－0••	－＊••	－	－＊••	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	${ }^{\circ} 0 \cdot$	－	$\bigcirc 00 \bullet$	${ }^{\circ} 0 \cdot$－
MIL－P－46046A	－＊＊＊	$\bullet \bullet \bullet$	－	－	－	－	－		－0．0	－	－＊＊•	－$\bullet \bullet$	－0．0	$\bullet \bullet \bullet \bullet$	－	$\bigcirc \bullet \bullet$	－＊••
MIL－H－81019B	－•••	－0．	－	－	－	－	－	$\bigcirc 0 \cdot \bullet$	－．．•	－	－．．．	$\bigcirc \bullet \bullet$	$\bigcirc \bullet \bullet$	$000 \cdot$	－	$000 \cdot$	－00•
MIL－S－81087	－•••	－•••	－	－	－	－	－	${ }^{\circ} 0 \cdot$	－听	－	－．．．	－•••	$\bullet \bullet \bullet$	－•••	－	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$

THERMAL PROPERTIES

THERMAL PROPERTIES

"Because O-rings often face extreme heat or extreme cold, there are important thermal properties you must consider."

Most physical and chemical properties are impacted when an elastomeric compound meets high or low temperatures, especially if the exposure is for a prolonged period. Affected properties can include hardness, tensile strength, modulus, elongation, compression set, and volume. Because O-rings often face extreme heat or extreme cold (and in some cases, both extremes), there are important thermal properties you must consider. These include high and low temperature effects, coefficient of thermal expansion, and the Gough-Joule effect.

Table 7: Material Performance in High Temperatures

HIGH TEMPERATURE EFFECTS

Unless specially formulated, elastomers will typically soften when first exposed to high temperatures. Extended heat exposure can cause irreversible changes in tensile strength and elongation, as well as alterations in the chemical makeup of a seal such that it hardens and cracks. This hardening is the result of additional cross-linking, plasticizer evaporation, and/or oxidation. Table 7 shows how high temperatures impact a handful of the most-used materials.
There are four different ASTM test methods related to high temperature effects. All are designed to gauge the amount of material degradation that results from exposure to a heated environment. The main difference between these tests is the device used to keep pressure and heat on the specimen. D 454 uses an air-pressure chamber to mimic the degrading effects of heat and air. D 572 utilizes a similar oxygen-pressure chamber to simulate deterioration by heat and oxygen. D 573 details testing in an air oven, and D 865 describes heat and air testing within a test tube enclosure.

LOW TEMPERATURE EFFECTS

Unlike the changes that result from exposure to high temperatures, changes brought about by low temperature exposure are generally not permanent and can often be reversed once heat returns. For example, extended exposure to low temperatures will increase an elastomer's hardness, but the material will soften again when the temperature rises. Perhaps the most important consideration related to low temperatures involves seals which must also work in a low-pressure environment. Unless the selected seal compound is sufficiently soft and resilient, the combination of low temperature (which can cause shrinkage and hardening of the seal) and low service pressure (which will not help hold the seal against the mating surface) can cause leakage and failure.

Figure 30: Temperature Retraction, or "TR-10"

THERMAL PROPERTIES

There are two main tests related to low temperature effects. The first is described in ASTM D 2137 (Method A) as a way to measure the brittleness point, or the lowest temperature at which a sample will not fracture or crack when struck once. The second test is described in ASTM D 1329. More commonly known as a TR-10, this temperature retraction test (see Figure 30) is considered by many within the rubber industry to be the most useful indicator of a material's low temperature performance.
In a nutshell, the TR-10 measures material resilience. Samples are frozen in a stretched state, then gradually warmed until they lose 10% of this stretch (i.e. retract by 10%). The results of such tests are believed to provide a good basis for evaluating the effects of crystallization and the impact of low temperatures on visco-elastic properties. TR-10 results are generally thought to be consistent with the capabilities of most dynamic seals. Static seals can often function at $8^{\circ} \mathrm{C}$ below the TR-10 temperature.

THERMAL PROPERTIES

COEFFICIENT OF THERMAL EXPANSION

Coefficient of thermal expansion may be either linear or volumetric. The coefficient of linear thermal expansion is the change in length per unit of length for a 1° rise in temperature. The coefficient of volumetric thermal expansion is the change in volume divided by the product of the original volume and the change in temperature. In solids, the coefficient of volumetric expansion is three times the coefficient of linear expansion.
Because elastomeric compounds have much higher coefficients of expansion
than steel or aluminum (i.e. than the materials from which many glands are made), thermal expansion may cause an already tight seal to swell and overfill the gland as temperatures rise. Glands have even been known to rupture under the force exerted by an expanding seal. Conversely, a seal design that provides only minimal squeeze in a low temperature setting cannot look to thermal effects for help in tightening the seal.

GOUGH-JOULE EFFECT

The Gough-Joule effect (see Figure 31) is actually two related phenomena. First, unlike many materials, rubber heats up when stretched quickly. Second, rubber that is held stationary at one end and stretched under a given load will actually retract if localized heat is applied. This is true because the rubber's stressed macromolecular chains are trying to regain a less-stressful state. The Gough-Joule effect is perhaps most important in rotary seal designs, where excessive installed stretch in conjunction with system heat can cause an 0 -ring to retract, seizing the rapidly rotating shaft and dooming the design. With these physical, chemical, and thermal properties in mind, let's now look more specifically at the relative strengths and weaknesses of the most commonly used O-ring materials.

Figure 31: Gough-Joule Effect

MATERIAL PROFILES

"Selecting the best material for a given application will inevitably require both comparison and compromise."

The following profiles of the most commonly used O-ring materials are intended to serve as general guidelines only. Inherent strengths and weaknesses are noted, but keep in mind that these properties may be enhanced or diminished through
compounding. Selecting the best material for a given application will inevitably require both comparison and compromise. You should always test final formulations (the base material and all additional modifying agents) in actual service conditions prior to field use.

- BUTYL RUBBER (*)
- CHLOROPRENE
- CHLOROSULFONATED POLYETHYLENE
- EPICHLOROHYDRIN
- ETHYLENE ACRYLIC
- ETHYLENE PROPYLENE (*)
- FLUOROCARBON
- FLUOROSILICONE
- HYDROGENATED NITRILE
- NATURAL RUBBER (*)

NITRILE (BUNA N)

- PERFLUOROELASTOMER
- POLYACRYLATE
- POLYURETHANE
- SILICONE
- STYRENE BUTADIENE (*)
- TETRAFLUOROETHYLENE
- TETRAFLUOROETHYLENE/PROPYLENE
* Non Oil-Resistant Material

BUTYL RUBBER

"Butyl offers excellent resistance to gas permeation."

ASTM D 1418 DESIGNATION: IIR

ASTM D 2000, SAE J200 TYPE / CLASS: AA, BA
STANDARD COLOR: Black
TRADE NAMES: Exxon Butyl® (ExxonMobil Chemicals)
RELATIVE COST: Medium
GENERAL TEMPERATURE RANGE: -50 to $+121^{\circ} \mathrm{C}$
An unsaturated copolymer of isobutylene and isoprene (thus the designation IIR), butyl rubber has two defining traits: (1) it is composed entirely of petroleum, limiting its usefulness around hydrocarbons (since "likes dissolve likes"); and (2) it offers excellent resistance to gas permeation, making it ideal for vacuum seals. Though ethylene propylene is now used rather than butyl for a number of applications, butyl is still used in some aircraft hydraulic systems. Butyl offers stronger resistance to sunlight and ozone than isoprene alone; presence of the saturated isobutylene in the polymer chain makes this possible (see Figure 32). Butyl also resists heat, chemicals, and abrasion.

IR PERFORMS WELL IN

Hot water \& steam (up to $121^{\circ} \mathrm{C}$)

- Phosphate ester type hydraulic fluids (e.g. Skydrol®, Fyrquel®, Pydraul®) Silicone fluids \& greases

IIR DOES NOT PERFORM WELL IN

Mineral oil \& grease
Hydrocarbon oil \& fuel

IIR

Isobutylene-isoprene
Figure 32: Molecular Structure of Butyl Rubber

CHLOROPRENE

"Chloroprene was one of the first synthetic materials developed as an oil-resistant substitute for natural rubber."

ASTM D 1418 DESIGNATION: CR
 ASTM D 2000, SAE $J 200$ TYPE / CLASS: BC, BE
 STANDARD COLOR: Black
 TRADE NAMES: Baypren® (LANXESS); Neoprene® (DuPont)
 RELATIVE COST: Medium
 GENERAL TEMPERATURE RANGE: -40 to $+121^{\circ} \mathrm{C}$

Chemically known as polychloroprene but often referred to by the trade name Neoprene®, chloroprene was one of the first synthetic materials developed as an oil resistant substitute for natural rubber. Neoprene's molecular structure closely mirrors that of natural rubber, with the exception that a chlorine atom has replaced a methyl (CH3) sidegroup (see Figure 33). Presence of a chlorine atom in each repeating unit increases the compound's polarity and improves its resistance to hydrocarbon fluids despite the presence of a double bond in the main chain. Because the chlorine atom essentially deactivates the double bond, chloroprene is more resistant to oxygen, ozone, and UV light than similarly unsaturated polymers.
Due to the similarity of their structures, natural rubber and chloroprene are generally comparable in their good strength, abrasion resistance, resilience, elongation, and strain crystallization characteristics. Both also offer a similar low fatigue property, low heat build up, low temperature flexibility, and high bondability. Chloroprene surpasses natural rubber in its resistance to aging, heat, oils, ozone, and solvents. Chloroprene has also gained FDA approval for use in the food and beverage industries.

CR PERFORMS WELL IN:

. High aniline point petroleum oils

- Mild acids
- Refrigeration seals (resistance to Freon® \& ammonia)
- Silicone oil \& grease
- Water

CR DOES NOT PERFORM WELL IN

Hydrocarbons (aromatic, chlorinated, nitro)

- Ketones (MEK, acetone)
- Phosphate ester fluids
- Strong oxidizing acids

CR

Fiqure 33: Molecular Structure
of Chloroprene

ETHYLENE PROPYLENE

> "Ethylene propylene is primarily valued for its outstanding resistance to phosphate ester type hydraulic fluids, as well as for its typical temperature range.

ASTM D 1418 DESIGNATION: EPM, EPDM
 ASTM D 2000, SAE J200 TYPE / CLASS: AA, BA, CA, DA

STANDARD COLOR: Black
TRADE NAMES: Buna EP® (LANXESS); Keltan® (LANXESS); Nordel® (DuPont);
Vistalon® (ExxonMobil Chemicals)
RELATIVE COST: LOW
GENERAL TEMPERATURE RANGE: -55 to $+155^{\circ} \mathrm{C}$
Ethylene propylene is a copolymer of ethylene and propylene (EPM), or, in some cases, a terpolymer due to the addition of a diene monomer (EPDM). This additional diene monomer can be important because it includes unsaturation to facilitate sulfur crosslinking (see Figure 37).
In use since 1961, ethylene propylene is primarily valued for its outstanding resistance to Skydrol® and other phosphate ester type hydraulic fluids (including Pydraul® and Fyrquel®), as well as for its typical temperature range (-55 to $+150^{\circ} \mathrm{C}$). Ethylene propylene is also known for its good resistance to weathering thanks to saturation within its chemical backbone.

EPDM

Figure 37: Molecular Structure of Ethylene Propylene

- Alcohols
- Automotive brake fluids
- Dilute acids \& dilute alkalis
- Ketones (MEK, acetone)
- Silicone oils \& greases
- Steam (up to $204^{\circ} \mathrm{C}$)
- Water

EPDM DOES NOT PERFORM WELL IN:
Aliphatic \& aromatic hydrocarbons
Di-ester based lubricants

- Halogenated solvents
- Petroleum oils

FLUOROCARBON

"Fluorocarbons make excellent general purpose O-rings due to their exceptional resistance to chemicals, oil, and temperature extremes."

ASTM D 1418 DESIGNATION: FKM, FPM
ASTM D 2000, SAE 3200 TYPE / CLASS: HK
STANDARD COLOR: Black, Brown, Green
TRADE NAMES: DAI-EL® (Daikin Industries); Dyneon® (3M); Tecnoflon® (Solvay); Viton® (DuPont)

RELATIVE COST: High

GENERAL TEMPERATURE RANGE: -25 to $+204^{\circ} \mathrm{C}$
Also referred to as fluoroelastomers, fluorocarbon compounds are thermoset elastomers containing fluorine (see Figure 38). Fluorocarbons make excellent general purpose 0 -rings due to their exceptional resistance to chemicals, oil, and temperature extremes (-25° to $+204^{\circ} \mathrm{C}$). Specialty compounds can further extend the low temperature limit down to about $-30^{\circ} \mathrm{C}$ for dynamic seals and about $-40^{\circ} \mathrm{C}$ in static applications.
Fluorocarbons usually have good compression set resistance, low gas permeability, and resistance to ozone and sunlight. Over the last five decades, this remarkable combination of properties has prompted the use of FKM seals in a variety of demanding sectors. Though they were initially formulated for use in aerospace applications, FKM compounds are now widely used in the automotive, appliance, fluid power, and chemical processing industries.

Figure 38: Molecular Structure of Fluorocarbon (Type A)

Three main factors contribute to the remarkable heat (see Table 8) and fluids resistance of fluorocarbon compounds. First, there are extremely strong bonds between the carbon atoms comprising the polymer backbone and the attached (pendant) fluorine atoms. Under most circumstances, these bonds cannot be broken, and thus the polymer is not prone to undergo chain scission (division of the macromolecular chains into smaller, weaker, more susceptible segments).
Second, fluorocarbons feature a high fluorine-to-hydrogen ratio. In other words,
fluorine (rather than hydrogen) atoms fulfill the majority of the available bonds along the material's carbon backbone. Polymers with a high level of fluorination have proven to be extremely stable. A stable compound is less inclined to react to, or be broken down by, its environment.
Third, the carbon backbone is fully saturated. That is, it contains only single bonds between the carbon atoms. It does not contain any of the covalent double bonds present in unsaturated compounds. Since double bonds are the focus for chemical attack, the saturated structure of fluorocarbons renders them impervious to harmful agents (such as oxygen, ozone, and UV light) that typically degrade unsaturated materials.

Table 8: Heat Resistance of FKM

FLUOROCARBON

Depending on the specific needs of your application, there are a number of different fluorocarbon formulations available for use. Though they may share some common characteristics, these different types are distinguished by their processing and enduse properties. Perhaps the most well-known fluorocarbon manufacturer is DuPont, to the point that the trade name for their compound, Viton®, is often used as if it were a generic term for FKM. In the interests of simplicity, the following descriptions of some of the most common FKM formulations will make use of the DuPont "type" names. The original commercial fluorocarbon, Viton A, is the general-purpose type and is still the most widely used. Viton A is a copolymer of vinyldiene fluoride (VF2) and hexafluoropropylene (HFP). Generally composed of 66\% fluorine, Viton A compounds offer excellent resistance against many automotive and aviation fuels, as well as both aliphatic and aromatic hydrocarbon process fluids and chemicals. Viton A compounds are also resistant to engine lubricating oils, aqueous fluids, steam, and mineral acids Viton B fluorocarbons are terpolymers combining tetrafluoroethylene (TFE) with VF2 and HFP. Depending on the exact formulation, the TFE partially replaces either the VF2 (which raises the fluorine level to approximately 68\%) or the HFP (keeping the fluorine level steady at 66\%). Viton B compounds offer better fluids resistance than the Viton A copolymers.
Viton GF fluorocarbons are tetrapolymers composed of TFE, VF2, HFP, and small amounts of a cure site monomer. Presence of the cure site monomer allows peroxide curing of the compound, which is normally 70% fluorine. As the most fluid resistant of the various FKM types, Viton GF compounds offer improved resistance to water, steam, and acids. Viton GFLT fluorocarbons are similar to Viton GF, except that perfluoromethylvinyl ether (PMVE) is used in place of HFP. The "LT" in Viton GFLT stands for "low temperature." The combination of VF2, PMVE, TFE, and a cure site monomer is designed to retain both the superior chemical resistance and high heat resistance of the G-series fluorocarbons. In addition, Viton GFLT compounds (typically 67\% fluorine) offer the lowest swell and the best low temperature properties of the types discussed here (see Table 9). Viton GFLT can seal in a static application down to approximately $-40^{\circ} \mathrm{C}$. A brittle point of $-45^{\circ} \mathrm{C}$ can be achieved through careful compounding.
PERCENT FLUORINE
FUEL SWELL (70 hrs. at

VITON A
66\%
ITON B
68\%
VITON GF
70\%
VITON GFLT
67\%

Fuel C, \% volume	+5	+4	+3	+3
Methanol, \% volume	+70	+22	+3	+5

Methanol, \% volume $+70$
$+22$
$+3$
$+5$
LOW TEMPERATURE FLEXIBILITY:

TR- $10,{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
Table 8: Comparison of standard FKM types

FKM PERFORMS WELL IN

- Acids

- Aircraft engine applications
- Gasoline (\& alcohol blends)
- Hard vacuum applications
- Low outgassing applications
- Petroleum products
- Silicone fluids \& greases
- Solvents

FKM DOES NOT PERFORM WELL IN:

. Amines

- Hot chlorosulfonic acid
- Hot hydrofluoric acid
- Hydrocarbons (nitro)
- Ketones
- Low molecular weight esters \& ethers
- Fireproof hydraulic fluids (e.g. Skydrol®)
"As part of an ongoing effort to engineer more resistant compounds, a new class of nitrile was developed in the 1980s."

ASTM D 1418 DESIGNATION: HNBR

ASTM D 2000, SAE J200 TYPE / CLASS: DH
STANDARD COLOR: Black, Green
TRADE NAMES: Therban® (LANXESS); Zetpol® (Zeon Chemicals)
RELATIVE COST: High
GENERAL TEMPERATURE RANGE: -30 to $+150^{\circ} \mathrm{C}$
Though the double bonds within nitrile's butadiene segments are needed for crosslinking (see Nitrile-Buna N), they are also the main attack sites for heat, chemicals, and oxidation. As part of an ongoing effort to engineer more resistant compounds, a new class of nitrile was developed in the 1980s. Initially known as highly saturated nitrile (HSN), this class is now more commonly called hydrogenated nitrile butadiene rubber (HNBR), or just hydrogenated nitrile (see Figure 40).
As you might guess, hydrogenated nitrile results from the hydrogenation of standard nitrile. Hydrogenation is the process of adding hydrogen atoms to the butadiene segments. Adding hydrogen greatly reduces the number of carbon-to-carbon double bonds that would otherwise be weak links in the polymer chain. Why are double bonds weak? It stems from valence, or the ability of an atom to form one or more energy bonds with neighboring atoms. A carbon atom can form four distinct covalent bonds. Because carbon has this valence of four, it is most "satisfied" when it has actually formed four single bonds (a state known as saturation) rather than two single bonds and a double bond. A satisfied, saturated atom is more stable, so a compound composed largely of saturated carbons is less reactive and more resistant to chemical attack.

HNBR

(Polybutadiene-Acrylonitrile)

As shown in Figure 40, HNBR's main chain is primarily composed of highly saturated hydrocarbons and acrylonitrile (ACN). Thanks to their saturation, the hydrocarbon segments impart heat, chemical, and ozone resistance. Keep in mind that increased hydrogenation and heat resistance make HNBR more likely to creep (cold flow).
Increased hydrogenation also leads to decreased low temperature elasticity. As with standard nitrile, the ACN content of HNBR imparts toughness, as well as fuel and oil resistance. This ACN content can be modified for specific uses. There are also a few remaining unsaturated butadiene segments (typically well under 10\%) to facilitate peroxide curing or, in some instances, sulfur vulcanization. Peroxide-cured HNBR has improved thermal properties and will not continue to vulcanize like sulfur-cured nitriles. Since its introduction, HNBR has proven itself in a variety of applications. Deeper and deeper oil wells require materials that can resist heat, crude oil, hydrogen sulfide (H2S), amine-based corrosion inhibitors, steam, and the detrimental effects of explosive decompression. HNBR meets these needs and is used for a variety of products, including O-rings, packings, wellhead seals, drill bit seals, blowout preventors, and drill pipe protectors.
HNBR is used in automotive air conditioning systems where R134a refrigerant gas has replaced the chlorofluorocarbon (CFC)-containing R12 refrigerant. HNBR is used in fuel parts due to its increased resistance to sour gasoline and ozone. It is used in oil line parts because of its resistance to elevated temperatures, oil additives, and coppercontaining metal sludge.
HNBR is also finding wider use as an alternative to fluorocarbon rubber (FKM) in shaft seals. Why the switch? The hardness of the mineral fillers - primarily calcium sulfate (CaSO4) and barium sulfite (BaSO3) - used to improve fluorocarbon's wear properties can cause grooving of the metal shaft, eventually providing a leak path that leads to seal failure. With other materials, carbon black (which is not as abrasive as the mineral fillers) might be substituted, but carbon black is not sufficient to give fluorocarbon good abrasion resistance. On the other hand, HNBR has excellent abrasion resistance, making it a viable alternative to FKM. HNBR also has better low temperature properties and tear resistance than fluorocarbon.

HNBR PERFORMS WELL IN:

Automotive applications (as O-rings, timing belts, fuel injector seals, fuel hose, shaft seals, diaphragms, and in air conditioning systems)

- Oil field applications (as O-rings, well-head seals, drill-bit seals, packers, drill-pipe protectors)

HNBR DOES NOT PERFORM WELL IN:

- Esters

- Ethers
- Hydrocarbons (chlorinated)

Ketones

Figure 40: Molecular Structure of Hydrogenated Nitrile

NATURAL RUBBER

"Natural rubber was the sole O-ring polymer before the development of synthetic elastomers in the r930s."

ASTM D 1418 DESIGNATION: NR

ASTM D 2000, SAE $\mathbf{J 2 0 0}$ TYPE / CLASS: AA
STANDARD COLOR: Black
TRADE NAMES: Too numerous to list.
RELATIVE COST: LOW
GENERAL TEMPERATURE RANGE: -50 to $+105^{\circ} \mathrm{C}$
Polyisoprene vulcanized from the latex of the Hevea brasiliensis tree, natural rubber was the sole O-ring polymer before the development of synthetic elastomers in the 1930s. Though its use has since sharply declined, natural rubber offers many excellent characteristics, including low heat build up, high resilience and elongation, good abrasion resistance, and low temperature fexibility.
Natural rubber has both high tensile strength and good tear strength due to its tendency to strain crystallize. It also undergoes low compression set. Its chief drawback is its poor resistance to either oils or solvents. The double bond in its main polymer chain (see Fiqure 41) also makes natural rubber susceptible to attack by oxygen, ozone and UV light.

NR PERFORMS WELL IN

Alcohols

- Organic acids
and as non-hydraulic seals

NR DOES NOT PERFORM WELL IN:

- Aromatic, aliphatic, or halogenated hydrocarbons
- Ozone
- Petroleum oils

NR

Figure 41: Molecular Structure of Natural Rubber

NITRILE - BUNA N

"Nitrile rubber is the most commonly used elastomer for O-rings and other sealing devices."

ASTM D 1418 DESIGNATION: NBR, XNBR

ASTM D 2000, SAE J200 TYPE / CLASS: BF, BG, BK, CH
STANDARD COLOR: Black
TRADE NAMES: Krynac® (LANXESS); Nipol® (Zeon Chemicals)

RELATIVE COST: Low

GENERAL TEMPERATURE RANGE: -40 to $+108^{\circ} \mathrm{C}$
Nitrile rubber is the most commonly used elastomer for O-rings and other sealing devices. Also known as Buna N, nitrile (see Figure 42) is a copolymer of butadiene and acrylonitrile (ACN). The name Buna N is derived from butadiene and natrium (the Latin name for sodium, the catalyst used in polymerizing butadiene). The " N " stands for acrylonitrile.
The butadiene segment imparts elasticity and low temperature flexibility. It also contains the unsaturated double bond that is the site for crosslinking, or vulcanization. This unsaturated double bond is also the main attack site for heat, chemicals, and oxidation.
The acrylonitrile segment imparts hardness, tensile strength, and abrasion resistance, as well as fuel and oil resistance. Heat resistance and gas impermeability are also improved through increased ACN content, which typically ranges from 18% to 45%. A standard, general-purpose nitrile compound usually contains 34% ACN
The relationship between the ACN content, volume swell in ASTM \# 3 oil, and the brittle point of the elastomer is illustrated in Table 10.
General-purpose nitrile compounds with a 34\% ACN content have a recommended temperature range of -40° to $+107^{\circ}$ C. The low temperature fiexibility can be improved by reducing the ACN content. Nitrile compounds with an ACN content of 18% to 20% remain flexible at temperatures down to $-54^{\circ} \mathrm{C}$.

NBR

(Polybutadiene-Acrylonitrile)
Figure 42: Molecular Structure of Nitrile

Unfortunately, compounding ingredients and polymers that offer the best low temperature properties are usually adversely affected by high temperatures. A general-purpose compound is cured with sulfur, but as the ambient temperature in an application exceeds $+108^{\circ} \mathrm{C}$, free sulfur in the compound finds other unsaturated double bonds and forms additional crosslinks. This results in compression set and hardening of the compound. To improve high temperature properties, a peroxide cure system and/or mineral fillers must be used. Peroxide-cured compounds have both better high temperature properties (up to $+135^{\circ} \mathrm{C}$) and improved compression set characteristics, but they are also more difficult to process and more expensive than sulfur-cured compounds.
Nitrile compounds outperform most other elastomers due to high tensile strength, as well as excellent abrasion, tear, and compression set resistance. Nitriles also have very good aging properties under severe conditions. Because of the double bonds present in the polybutadiene parts of the chemical backbone, nitrile compounds have poor resistance to ozone, sunlight, and weathering. They should not be stored near ozonegenerating electric motors or equipment.

Table 10: Relationship Between ACN content, Volume Swell in ASTM \#3 Oil, and Brittle Point

NITRILE - BUNA N

Carboxylated nitrile rubber compounds (XNBR) provide even better strength properties, especially abrasion resistance. Carboxylated nitriles are produced by the inclusion of carboxylic acid groups on the polymer during polymerization. These carboxylic acid groups provide extra "pseudo" crosslinks, producing harder, tougher compounds with higher abrasion resistance, modulus, and tensile strength than standard nitriles.
Carboxylated nitriles are, however, less flexible at low temperatures and less resilient than non-carboxylated compounds. Also, the "pseudo" crosslinks (being ionic in nature) are thermally sensitive. As temperatures increase, the ionic bonds lose strength. Other nitrile variations are possible, including internally lubricated compounds with improved friction and wear properties, as well as Food and Drug Administration (FDA) and National Sanitation foundation (NSF) formulations for food and potable water
applications.

NBR PERFORMS WELL IN:

Petroleum oils \& fuels
Silicone oils $\&$ greases
Ethylene glycol

- Dilute acids

Water (below $100^{\circ} \mathrm{C}$)

NBR DOES NOT PERFORM WELL IN

- Aromatic hydrocarbons (benzene, toluene, xylene)
- Automotive brake fluid
- Halogen derivatives (carbon tetrachloride, trichloroethylene)
- Ketones (MEK, acetone)
- Phosphate ester hydraulic fluids (Skydrol@, Pydraul@)
- Strong acids

PERFLUOROELASTOMER

"The fully-fluorinated monomers contained in FFKM are the reason it exhibits superior chemical resistance."

ASTM D 1418 DESIGNATION: FFKN

ASTM D 2000, SAE J200 TYPE / CLASS: JK, HK
STANDARD COLOR: Black
TRADE NAMES: Fluorezi® (NewDealSeals); Chemraz® (Greene, Tweed \& Company) Kalrez® (DuPont)

RELATIVE COST: Very high

GENERAL TEMPERATURE RANGE: -30 to $+325^{\circ} \mathrm{C}$
Most commercial perfluoroelastomers are terpolymers of tetrafluoroethylene (TFE), perfluoromethylvinyl ether (PMVE), and a cure site monomer (CSM). The fullyfluorinated monomers contained in perfluoroelastomers are the reason they exhibit superior chemical resistance (see Figure 43). As with fluorocarbon elastomers, the bonds between carbon and fuorine atoms are extremely strong, making the chemical structure virtually unbreakable. Also, polymers with high levels of fluorine (as opposed to hydrogen) have proven to be more stable and less chemically reactive. Perfluoroelastomers also enjoy immunity from chemical attack due to saturation along the polymer's backbone. There are no double bonds to be attacked by degradants such as oxygen, ozone, UV light, or harsh chemicals.

Tetrafluoroethylene Perfluoromethylvinyl Ether (TFE)

Perfluoroelastomers can trace their lineage back to the late 1960s, when chemists at DuPont pioneered what came to be known as Kalrez®. In so doing, they combined the chemical resistance of Teflon® and the elasticity of Viton® into a fully-fluorinated polymer that could be cross-linked. Differences in perfluoroelastomer performance are often due to the manner in which the material is cross-linked. In the early days, perfluoroelastomer compounds made use of bisphenol cross-links (like those still seen in current copolymer fluoroelastomers). Bisphenol curing works fine for fluoroelastomers, but it became clear that these bisphenol cross-links were causing perfluoroelastomers to undergo a high degree of compression set. As a result, in the mid-80s DuPont developed compound 4079. This new perffuoroelastomer formulation utilized high temperature triazine cross-links. Compression set was reduced, and, as an added bonus, thermal properties were enhanced, allowing the material to stay resilient even in temperatures approaching $316^{\circ} \mathrm{C}$ (see Table 11).
Because of the presence of aggressive chemicals and the need to exclude
microcontaminants, seals used in the manufacturing of integrated circuits (ICs) must withstand harsh fluids while resisting extraction. Perfluoroelastomers like Kalrez which is resistant to over 1,600 solvents, chemicals, and plasmas) have found wide use within the semiconductor industry. Kalrez seals are also common in the oil exploration and refining industries, as well as in chemical processing and transportation seals. e aware that Kalrez s vulnerability to compression set generally increases as emperatures go up. Despite its overall chemical resistance, Kalrez can swell when in contact with uranium hexafluoride, fully halogenated Freon®, and some fluorinated solvents. Kalrez should not be exposed to molten or gaseous alkali metals
As instrumental as they were to the development and acceptance of
perfluoroelastomer compounds, the DuPont personnel were not the only ones on the case. At about the same time that DuPont was finding new success with triazine cross links, another company was experimenting with peroxide cure systems. Greene, Tweed \& Company started producing Chemraz® parts based on an imported peroxide crossinked perfluoroelastomer.
Chief among Chemraz's virtues is its outstanding overall chemical compatibility Chemraz compounds are resistant to almost every chemical compound, including fuels, ketones, esters, alkalines, alcohols, aldehydes, and both organic and inorganic acids. Chemraz also has very good resistance to compression set, and it offers outstanding steam resistance. Chemraz has an upper temperature limit of about $232^{\circ} \mathrm{C}$. As with Kalrez, Chemraz has found a place in the demanding semiconductor industry. Greene, Tweed prepares Chemraz compounds in a state-of-the-art clean room to ensure purity from the very beginning.

PERFLUOROELASTOMER

Not to be outdone, NewDealSeals launched a perfluoroelastomer program in 2010. We developed the compound - known as Fluorezi® - with an eye toward providing a costcompetitive (yet still high performance) alternative to Kalrez and Chemraz.
New Fluorezi compounds are also being developed in response to industry needs. As a matter of fact, NewDealSeals offers a wide range of seal materials (produced in a class 100/1000 clean room) specifically designed to provide both the high purity and the
extraordinary chemical resistance demanded by the semiconductor industry Fluorezi seals are also commonly used in chemical and petroleum processing, analytical instruments, automotive systems (fuel and oil), and spray painting systems. The main advantages of Fluorezi compounds over Kalrez and Chemraz: less compression set and higher strength at a lower cost.

FFKM PERFORMS WELL IN

- Most chemical \& petrochemical situations

NBR DOES NOT PERFORM WELL IN

- Uranium hexafluoride
- Fully halogenated Freon®
- Some fluorinated solvents

SILICONE

"Silicones are primarily based on a strong sequence of silicon and oxygen atoms rather than a long chain of carbon atoms."

ASTM D 1418 DESIGNATION: MQ, PMQ, VMQ, PVMQ
 ASTM D 2000, SAE J200 TYPE / CLASS: FC, FE, GE

STANDARD COLOR: Red
TRADE NAMES: KE® (Shin-Etsu Silicones); Silastic® (Dow Corning Corp.);
Silplus® (Momentive Performance Materials Inc.)
Tufel® (Momentive Performance Materials Inc.)
RELATIVE COST: Medium
GENERAL TEMPERATURE RANGE: -54 to $+232{ }^{\circ} \mathrm{C}$
Though carbon and hydrogen are part of their chemistry, silicones are primarily based on a strong sequence of silicon and oxygen atoms (see Figure 48) rather than a long chain of carbon atoms (as with many hydrocarbons). This silicon-oxygen backbone is much stronger than a carbon-based backbone, making silicones more resistant to extreme temperatures (-54 to $+232^{\circ} \mathrm{C}$), chemicals, and shearing stresses.
Due to saturation in the polymer's main chain, silicones are very resistant to oxygen, ozone, and UV light. Of course, this same saturation also demands that the material be peroxide cured since it is not possible to sulfur cure a saturated polymer. In addition to being generally inert (non-reactive), silicones are odorless, tasteless, non-toxic, and fungus resistant. They also have great flexibility retention and low compression set.

There are four different silicone formulations in use today. Standard methyl silicone is known simply as MQ. By replacing a small number (typically less than 1\%) of the pendent methyl (CH 3) groups in $M Q$ with vinyl $(\mathrm{CH} 2 \mathrm{CH})$ groups, you arrive at what is known as vinyl methyl silicone, or VMQ (see Figure 48). VMQ compounds tend to have better cure properties and undergo lower compression set than standard MQ. Replacing 5% to 10% of the methyl groups with ringed phenyl (C6H5) groups results in phenyl methyl silicone, or PMQ. PMQs have better low temperature properties than MQ or VMQ. Finally, adding some of the aforementioned vinyl groups to PMQ results in phenyl vinyl methyl silicone, or PVMQ.
Silicones are not well suited for dynamic use due to their high friction characteristics, low abrasion resistance, and poor tear and tensile strength. Many silicones also suffer from above average mold shrinkage. Though they can be utilized in high aniline point oils, silicones are considered non-resistant to petroleum oils. Silicones swell considerably in both aliphatic and aromatic hydrocarbon fuels unless a special compound is formulated. Silicones are also very gas permeable.

VMQ PERFORMS WELL IN:

- Engine \mathbb{C} transmission oils (mineral oils)
- Ozone

Dry heat

VMQ DOES NOT PERFORM WELL IN

- Petroleum oils \& fuels
- Ketones (MEK, acetone)
- Steam
- Concentrated acids

Figure 48: Molecular Structure of Silicone

STYRENE BUTADIENE

"SBR is used in automobile tire production and in assorted molded rubber goods."

ASTM D 1418 DESIGNATION: SBR

ASTM D 2000, SAE J200 TYPE / CLASS: AA, BA
STANDARD COLOR: Black
TRADE NAMES: Too numerous to list
RELATIVE COST: LOW
GENERAL TEMPERATURE RANGE: -45 to $+100^{\circ} \mathrm{C}$
Also known as Buna S, or GRS (Government Rubber Styrene), styrene butadiene is a copolymer of styrene and butadiene (see Figure 49). Though SBR's low strength properties require the addition of reinforcing agents to make the compound stronger, SBR was widely used as the synthetic substitute for natural rubber during World War II. Like natural rubber, SBR is non oil-resistant.
SBR's use since WWII has sharply declined, though it is still used in automobile tire production and in assorted molded rubber goods. SBR is unsuitable for some applications because the double bond in the polymer backbone invites attack by oxygen, ozone, and UV light.

SBR

Figure 49: Molecular Structure of Styrene Butadiene

SBR PERFORMS WELL IN:

- Water
- Alcohol
- Silicone oil \& grease
- Automotive brake systems

SBR DOES NOT PERFORM WELL IN:

Petroleum oils \& fuels

- Strong acids

Aromatic, aliphatic, or halogenated hydrocarbons Mineral oils

TETRAFLUOROETHYLENE

"The inability of other materials to stick to PTFE makes it perfect for applications requiring a low coefficient of friction."

ASTM D 1418 DESIGNATION: FEP

ASTM D 2000, SAE 3200 TYPE / CLASS: -
STANDARD COLOR: White
TRADE NAMES: Algoflon® (Solvay); Polyflon® (Daikin Industries); Teflon® (DuPont)
RELATIVE COST: High
GENERAL TEMPERATURE RANGE: -186 to $+260^{\circ} \mathrm{C}$
Polytetrafluoroethylene (PTFE) is a completely fluorinated polymer produced when the monomer tetrafluoroethylene (TFE) undergoes free radical vinyl polymerization. As a monomer, TFE is made up of a pair of double-bonded carbon atoms, both of which have two fluorine atoms covalently bonded to them. Thus the name: "tetra" means there are four atoms bonded to the carbons, "fluoro" means those bonded atoms are fluorine, and "ethylene" means the carbons are joined by a double bond as in the classic ethylene structure. (Ethylene has hydrogen atoms attached to the carbons, as in Figure 50, but TFE has fluorine in place of the hydrogen, as in Figure 51.) When TFE polymerizes into PTFE, the carbon-to-carbon double bond becomes a single bond and a long chain of carbon atoms is formed, as in Figure 52. This chain is the polymer's backbone.

Figure 50: Ethylene

Figure 51: Tetrafluoroethylene

Figure 52: Polytetrafluoroethylene

With a ratio of four fluorine atoms to every two carbon atoms, the backbone is essentially shielded from contact. It's almost impossible for any other chemical to gain access to the carbon atoms. Even if an agent could gain access, the carbon-tofluorine bonds have high bond disassociation energy, so they're almost unbreakable This makes PTFE the most chemically resistant thermoplastic polymer available. PTFE is inert to almost all chemicals and solvents, allowing PTFE parts to function well in acids alcohols, alkalis, esters, ketones, and hydrocarbons. There are only a few substances harmful to PTFE, notably fluorine, chlorine trifluoride, and molten alkali metal solutions at high pressures.
PTFE is also very slippery. By its very nature, the fluorine in PTFE repels everything. As part of a molecule, fluorine is decidedly "anti-social." Anything getting close is repelled, and repelled molecules can't stick to the PTFE surface. This makes PTFE perfect for applications requiring a low coefficient of friction. The only thing slicker than PTFE is ice! Because they are essentially self-lubricating, PTFE parts are ideal for applications in which external lubricants (such as oils and greases) can't be used.
PTFE can withstand a wide range of temperatures (-184 to $260^{\circ} \mathrm{C}$). Because it's nonflammable and doesn't dissipate heat, PTFE is often used as a thermal insulator (as in welding equipment). At the other extreme, PTFE is widely used in very cold environments (such as space). Other important properties include resistance to both weathering and water absorption. PTFE can also act as an electrical insulator. Because of its chemical inertness, PTFE cannot be cross-linked like an elastomer Therefore it has no memory and is subject to creep (also known as cold flow). Creep is the increasing deformation of a material under a constant compressive load. This can be both good and bad. A little bit of creep allows PTFE seals to conform to mating surfaces better than most other plastic seals. Too much creep, however, and the seal is compromised. Compounding fillers are used to control unwanted creep, as well as to improve wear, friction, and other properties.
Keep in mind that PTFE fillers don't act like elastomer fillers, which become chemically bonded to the elastomer. With polytetrafluoroethylene, the high shear modulus fillers are encapsulated and bound by the low shear modulus PTFE. Because it does not possess a good elastic memory at or below normal temperatures, PTFE may need to be heated to facilitate installation. PTFE has poor cut resistance, so extra care must be taken not to damage seals during installation.
Other fillers include calcium fluoride (CaF2), which is specifically used in hydrofluoric acid (HF) service, and alumina (Al2O3), which can improve the mechanical properties of compounds destined for high voltage applications. Alumina-filled compounds are very abrasive.

TETRAFLUOROETHYLENE

FEP PERFORMS WELL IN:

Water

- Alcohol
- Silicone oil \& grease
- Automotive brake systems

FEP DOES NOT PERFORM WELL IN:

- Petroleum oils \& fuels
- Strong acids
- Aromatic, aliphatic, or halogenated hydrocarbons - Mineral oils

PTFE FILLERS

1. GLASS is the most common filler for PTFE. Widely used in hydraulic piston rings, glass gives good wear resistance, low creep, and good compressive strength. Glass also has excellent chemical compatibility. The major disadvantage is that glass-filled PTFE compounds are abrasive to mating surfaces, especially in rotary applications.
2. MOLYBDENUM DISULFIDE (MoS2) improves wear resistance and further lowers the coefficient of friction. "Moly" is typically combined with other fillers (such as glass and bronze).
3. CARBON (POWDER OR FIBER) imparts excellent compression (low deformation under load) and wear resistance, good thermal conductivity (heat dissipation), and low permeability. Carbon-filled PTFE compounds are not as abrasive as glass-filled compounds, but they are still more abrasive than polymer-filled compounds. Carbonfilled compounds have excellent wear and friction properties when combined with graphite. Carbon fiber lends better creep resistance than carbon powder, but fiber is more expensive.
4. GRAPHITE is a crystal modification of high purity carbon. Its flaky structure gives great lubricity and decreased wear. Graphite is often combined with other fillers (especially carbon and glass).
5. BRONZE (COPPER-TIN ALLOY) lends excellent wear resistance and thermal conductivity. Bronze-filled materials have higher friction than other filled PTFE compounds, but that can be improved by adding moly or graphite. Bearing and piston ring applications often use compounds containing 55\% bronze - 5\% moly. Bronze-filled compounds have poorer chemical resistance than other PTFE compounds.
6. STAINLESS STEEL supplies high wear resistance and load bearing capability, along with better chemical resistance than bronze-filled PTFE. Stainless steel is especially good in steam service.
7. WOLLASTONITE (CALCIUM SILICATE) is a mineral filler giving properties similar to glass (minus the abrasiveness). The FDA has approved it for food service.
8. POLYPHENYLENE SULFIDE (PPS, trade name Ryton®) was the first polymeric material used to improve PTFE's wear and abrasion properties. PPS-filled compounds also exhibit excellent deformation and extrusion resistance, making them good for use in back-up rings.
9. EKONOL® is a thermally stable aromatic polyester. When blended with PTFE, it
produces a composite material with excellent high temperature and wear resistance.
Ekonol® will not wear mating metal surfaces, making it good for rotary applications
Ekonol®-filled materials are also good for food service.
10. POLYMIDE is another polymeric filler offering superior wear and abrasion resistance. Polyimide-filled PTFE compounds have about the lowest friction properties of all filled PTFE materials, so they're great in non-lubricated (dry) applications. They will not abrade mating surfaces (even soft materials like brass, stainless steel, aluminum, and plastic). Polyimide is one of the most expensive PTFE fillers, however.

TETRAFLUOROETHYLENE PROPYLENE

"TFE/P provides a unique combination of chemical, heat, and electrical resistance."

ASTM D 1418 DESIGNATION: FEPM
ASTM D 2000, SAE J200 TYPE / CLASS: HK
STANDARD COLOR: Black
TRADE NAMES: Aflas® (Asahi Glass); Dyneon BRF® (3M); Viton VTR® (DuPont) RELATIVE COST: High
GENERAL TEMPERATURE RANGE: -20 to $+204^{\circ} \mathrm{C}$
The FEPM designation was originally directed at copolymers of tetrafluoroethylene (TFE) and propylene (P) such as is shown in Figure 53. TFE/P provides a unique combination of chemical, heat, and electrical resistance. Chemically, TFE/P resists both acids and bases, as well as steam, amine-based corrosion inhibitors, hydraulic fluids, alcohol, and petroleum fluids. TFE/P is also resistant to ozone and weather. TFE/P typically retains its remarkable chemical resistance even in high temperatures (short exposures up to 450 $\mathrm{F}, 232^{\circ} \mathrm{C}$), and tests have shown that electrical resistance actually improves with heat exposure. Nor do physical properties suffer; tensile strength typically approaches 2,500 psi.
The first TFE/P compound to be commercially marketed was Aflas® (a product of Asahi Glass). In a sense, Aflas defined the initial boundaries for base-resistant materials. Different grades of Aflas have different molecular weights. Most molded and extruded products are made from Aflas 150P, which has a molecular weight of about 130,000. In comparison, Aflas 100 H has a molecular weight of 200,000 and is typically used where high pressures are to be sealed, such as in oil field applications. TFE/P compounds are also widely used in the chemical processing, automotive, and aerospace industries. As shown in Table 12, TFE/P compounds are not as good as standard FKM-A (e.g. Viton A) compounds in terms of hydrocarbon resistance, but TFE/P surpasses FKM-A in resistance to strong bases, amines, and polar solvents.

Figure 53: Molecular Structure of
etrafluoroethylene / Propylene

Though it was the first, Aflas is not the only base-resistant fluoroelastomer on the market. DuPont also offers a wide range of excellent materials in this area. Despite being marketed under the same trade name (Viton) as their FKM "cousins," these baseresistant types more closely resemble the FEPM formulations previously discussed. Viton VTR-7480 is a copolymer of tetrafluoroethylene and propylene. Its chemical and processing properties are analogous to those of Aflas 150P, making Viton VTR-7480 suitable for both molded and extruded goods. Viton VTR-7512 is also a TFE/P copolymer, in this case similar to Aflas 100H. With its higher molecular weight (relative to Viton VTR-7480), Viton VTR-7512 is more extrusion resistant and good in higher pressures. The DuPont engineers continue to expand and refine their line of fluoroelastomers in response to the needs of industry. For example, automotive powertrain applications are making greater demands on seal compounds. Increasingly aggressive lubricants and higher temperatures are testing even the best materials.
In response, DuPont developed two new base-resistant Viton materials. These latest additions were unveiled at the Society of Automotive Engineers 2000 World Congress in Detroit. The first of these, Viton TBR-501C, is a terpolymer combining TFE/P with a low level of vinylidene fluoride (VF2). The "TBR" in the name refers to its "total base resistance." It is completely resistant to highly basic lubricant additives. Viton TBR-501C also has excellent high temperature resistance and outstanding processibility. The other new addition, Viton IBR-401C, is a terpolymer combining TFE/P with a higher devel of VF2 (roughly three times as much as is in Viton TBR-501C). The "IBR" refers to its intermediate base resistance. It is not as base-resistant as Viton TBR-50IC, but it still offers a good balance of base and hydrocarbon resistance, as well as excellent processibility.
In both the IBR and the TBR types, presence of the VF2 does three things. First, it In both the IBR and the TBR types, presence of the VF2 does three things. First, it
improves the materials' low temperature properties. Second, it also improves the improves the materials low temperature properties. Second, it aiso improves the at the expense of base resistance. That's why Viton IBR-401C has less base resistance than Viton TBR-501C; the IBR material has a greater VF2 content. Third, the VF2 allows both these materials to be bisphenol cured rather than peroxide cured (the norm for TFE/P copolymers). Bisphenol curing makes for easier processing and lower scrap rates. You may encounter instances in which none of the materials already discussed quite meet the needs of an application, especially if you require good low temperature properties in partnership with both base resistance and low swell in hydrocarbons. Viton specialty type GFLT may work, but you might also consider Viton ETP (also known as Viton Extreme). The "ETP" is short for ethylene, tetrafluoroethylene, and perfluoromethyl vinyl ether (PMVE). The Viton ETP formulations (such as ETP-500 and ETP-900) offer the most comprehensive fluids resistance (including resistance to strong bases, amines, and polar solvents) of all the Viton types. They also combine outstanding resistance to hydrocarbons (including fuels) and high temperature resistance (equal to standard FKM compounds) with good low temperature flexibility and good processibility. As you can see in Table 12, Viton ETP surpasses both standard FKM-A and TFE/P in resistance to hydrocarbons, strong bases, amines, and polar solvents.

TETRAFLUOROETHYLENE PROPYLENE

FEPM PERFORMS WELL IN:

FEPM Pumerous acids \& bas.

- Amines
- Brake fluids
- Petroleum fluids
- Phosphate esters

Steam

FEPM DOES NOT PERFORM WELL IN:

Aromatic fuels
Ethers

- Ketones

Toluene

						Base Resistance					әэиеłs!səy әше\|」	N $=0$ 0 0 0 0 0 0 0 0 0 0	Heat Resistance			$\begin{aligned} & \mathscr{U} \\ & \stackrel{U}{U} \\ & \stackrel{U}{U N} \\ & \stackrel{\sim}{\sim} \\ & \stackrel{Y}{\Psi} \\ & \sim \end{aligned}$		
MATERIAL NAME ASTM D1418 DESIGNATION																		
Butyl Rubber - IIR	AA, BA	Med	-45 to 120	F-G	G	G-E	E	G	F	G	P	E	G	P	G-E	F-G	G	G
Choroprene (Neoprene®) - CR	$B C, B E$	Med	-40 to 120	G	F-G	G-E	F-G	F-G	F	F	G	G	G	F-G	G-E	F	P	F-G
Chlorosulfonated Polyethylene																		
(Hypalon@) - CSM	CE	Med	-30 to 120	G	G	G-E	E	F-G	F	F	G	G	G	F	E	F	P	G
Epichlorohydrin - co, eco	CH	Med	-50 to 135	G	F-G	G-E	G	G-E	G	F	F-G	G-E	F-G	E	E	P-F	G-E	G
Ethylene Acrylic (Vamac®) -																		
AEM	EE, EF, EG	Med	-40 to 150	F	F	P-G	F-G	G	F	F	P	E	E	F	E	G	P	F
Ethylene Propylene - EPM,	$A A, B A$,																	
EPDM	CA, DA	Low	-54 to 150	G-E	G	E	E	G-E	G-E	G	P	G	E	P	E	G-E	E	G-E
Fluorocarbon - FKM	HK	High	-25 to 204	G	E	P-F	E	P-F	G-E	F	E	G	E	E	E	G-E	P	F
Fluorosilicone - FVMQ	FK	High	-56 to 180	P	F-G	F-E	E	G-E	P	E	G	P	E	G	E	G-E	P	P
Hydrogenated Nitrile - HNBR	DH	High	-30 to 150	G	E	E	F-G	G	G-E	F	P	G	E	E	G	G-E	G	F-G
Natural/Synthetic Rubber - NR/																		
IR	AA	Low	-50 to 105	E	F-G	G-E	F-G	G	E	G	P	F	F	P	P	G	P	G-E
Nitrile - NBR, XNBR	BF, BG, BK,																	
Perfluoroelastomer - FFKM	CH	Low	-40 to 108	G	F	G	F-G	G	G-E	F	P	G	G	E	P	G-E	P	F-G
Polyacrylate - ACM	JK, HK	V. High	-30 to 300	P	E	G-E	E	P-F	F	E	E	G	E	E	E	G	G	P-F
Polyurethane - AU, EU	DF, DH	Med	-20 to 180	G	P	P	P	P	F	F	P	E	E	E	E	F	P	F-G
Silicone - MQ, PMQ, VMQ,	BG (Mill)	High	-54 to 108	E	P	F	F-G	G	E	F-G	P	G	F	G	E	F	P	G-E
PVMQ																		
Styrene Butadiene - SBR	FC, FE, GE	Med	-54 to 232	P	F-G	E	G-E	E	P	E	F	P	E	F-G	E	G-E	F-P	P
Tetrafluoroethylene (Teflion®) -	AA, BA	Low	-50 to 100	G	F	F-G	F-G	G	G	G	P	F	F-G	P	P	G	P	F-G
FEp																		
Tetrafluoroethylene Propylene	None	High	-184 to 260	P-G	E	F-E	E	E	P	E	E	G	E	E	E	G	E	P
(Aflas®) - FEPM																		
Acrolein	HK	High	-20 to 204	G-E	E	E	E	P	G	E	E	G	E	E	E	G	G-E	P-F

			әэиедร!รәу дәдем	
MATERIAL NAME ASTM D1418 DESIGNATION				
Buty P Rubber - IIR	G	G	G	G-E
Choroprene (Neoprene®) - CR	F-G	G	F-G	E
Chlorosulfonated Polyethylene				
(Hypalon@) - CSM	G	F	F-G	E
Epichlorohydrin - co, eco	G	G	F-G	E
Ethylene Acrylic (Vamac@) -				
AEm	F	G	G	E
Ethylene Propylene - EPM,				
EPDM	G-E	G-E	E	E
Fluorocarbon - FKM	F	G-E	G	E
Fluorosilicone - FVMQ	P	F	E	E
Hydrogenated Nitrile - HNBR	F-G	E	G	G
Natural/Synthetic Rubber - NR/				
IR	G-E	E	E	F
Nitrile - NBR, XNBR				
Perfluoroelastomer - FFKM	F-G	G-E	G	F
Polyacrylate - ACM	P-F	F-G	G	E
Polyurethane - AU, EU	F-G	F	P	E
Silicone - MQ, PMQ, VMQ,	G-E	E	P	E
pvmQ				
Styrene Butadiene - SBR	P	P	E	E
Tetrafluoroethylene (Teflon®) -	F-G	G-E	E	F
fep				
Tetrafluoroethylene Propylene	P	F	E	E
(Aflas®) - FEPM				
Acrolein	P-F	F-G	G	E

MILITARY SPECIFICATIONS

The military community has established a number of specifications relevant to the sealing industry.

Specification	Polymer	Description
MIL-L-2104	Nitrile	Oil, engine
MIL-S-3136	Nitrile	Standard test fluids, hydrocarbon
MIL-L-3150	Nitrile	Oil, preservative
MIL-G-3278	Fluorosilicone	Aircraft grease
MIL-0-3503	Nitrile	Oil, preservative
MIL-G-3545	Nitrile	Hi-temperature grease
MIL-G-4339	Nitrile	Soluble oil
MIL-G-4343	Nitrile	Pneumatic system grease
MIL-J-5161	Nitrile	Jet fuel, reference
MIL-F-5566	Ethylene Propylene	Isopropyl alcohol
MIL-G-5572	Nitrile	Fuel, aircraft reciprocating engine, grades 80/87, 91/96, 100/130, 115/145 aviation gas
MIL-H-5606	Nitrile	Hydraulic fluid, petroleum base, aircraft and ordnance
MIL-T-5624	Nitrile	Jet fuel JP-4, JP-5
MIL-L-6081	Nitrile	Jet engine oil
MIL-L-6082	Nitrile	Lubricating oil, aircraft reciprocating piston engine
MIL-H-6083	Nitrile	Hydraulic fluid, preservative
MIL-L-6085	Fluorocarbon, Perfluoroelastomer, Tetrafluoroethylene Propylene	Synthetic di-ester base fluid
MIL-A-6091	Ethylene Propylene	Denatured ethyl alcohol
MIL-L-6387	Fluorocarbon, Perfluoroelastomer, Tetrafluoroethylene Propylene	Synthetic di-ester base lubricating oil
MIL-C-7024	Nitrile	Aircraft calibrating fluid
MIL-H-7083	Ethylene Propylene	Hydraulic fluid, hydrolube
MIL-G-7118	Nitrile	Actuator grease

MILITARY SPECIFICATIONS

Specification	Polymer	Description
MIL-G-7187	Nitrile	Grease, graphite
MIL-0-7277	Fluorocarbon, Perfluoroelastomer, Tetrafluoroethylene Propylene	Hydraulic fluid, petroleum base, hi- temperature
MIL-G-7421	Fluorosilicone	Grease, extreme low temperature
MIL-0-7557	Fluorocarbon, Perfluoroelastomer, Tetrafluoroethylene Propylene	Hydraulic fluid, petroleum base, hi- temperature
MIL-G-7711	Nitrile	Grease, general purpose
MIL-L-7808	Fluorocarbon, Perfluoroelastomer, Tetrafluoroethylene Propylene	Lubricating oil, aircraft turbine engine, synthetic di-ester base
MIL-L-7870	Nitrile	Lubricating oil, low temperature, general purpose
MIL-C-8188	Fluorocarbon, Perfluoroelastomer, Tetrafluoroethylene Propylene	Corrosion preventive oil, synthetic base
MIL-0-8200	Fluorocarbon, Perfluoroelastomer, Tetrafluoroethylene Propylene	Hydraulic fluid, aircraft and missile, silicate-ester base
MIL-H-8446	Fluorocarbon, Perfluoroelastomer, Tetrafluoroethylene Propylene	Hydraulic fluid, silicate-ester base (MIL-0-8515)
MIL-0-8515	Fluorocarbon, Perfluoroelastomer, Tetrafluoroethylene Propylene	Hydraulic fluid, silicate-ester base (MIL-H-8446)
MIL-L-9000	Nitrile	Lubricating oil, diesel
MIL-L-9236	Fluorocarbon, Perfluoroelastomer, Tetrafluoroethylene Propylene	Synthetic lubricating oil, turbine
MIL-E-8500	Ethylene Propylene	Ethylene glycol, technical, uninhibited
MIL-G-10924	Nitrile	Automotive grease
MIL-H-13910	Ethylene Propylene	Hydraulic fluid, non-petroleum auto. brake
MIL-L-15017	Nitrile	Oil, hydraulic
MIL-G-15793	Nitrile	Grease, instrument
MIL-F-16884	Nitrile	Fuel oil, diesel, marine
MIL-F-17111	Nitrile	Power transmission fluid
MIL-L-17331	Fluorocarbon, Perfluoroelastomer, Tetrafluoroethylene Propylene	Lubricating oil, non-corrosive, steam turbine
MIL-H-19457	Ethylene Propylene	Fire resistant hydraulic fluid (phosphate-ester base)

MILITARY SPECIFICATIONS

Specification	Polymer	Description
MIL-L-21260	Nitrile	Lubricating oil, engine, preservative
MIL-S-21568	Ethylene Propylene	Silicone fluid, dimethyl polysiloxane
MIL-H-22251	Ethylene Propylene	Hydrazine solution, 22\%
MIL-L-23699	Fluorocarbon, Perfluoroelastomer, Tetrafluoroethylene Propylene	Lubricating oil, aircraft turbine engine, synthetic base
MIL-G-23827	Nitrile	Grease, aircraft and instrument
MIL-G-25013	Fluorocarbon, Perfluoroelastomer, Tetrafluoroethylene Propylene	Bearing grease, extreme high temperature
MIL-G-25537	Nitrile	Aircraft, helicopter oscillating bearing grease
MIL-F-25558	Nitrile	Fuel, ram jet (RJI)
MIL-C-25576	Nitrile	Rocket and ram jet fuel (RP1)
MIL-F-25656	Nitrile	Jet fuel, Grade JP6
MIL-L-25681	Fluorocarbon, Perfluoroelastomer, Tetrafluoroethylene Propylene	Oil, moly disulfide, silicone base, high temperature
MIL-G-25760	Fluorocarbon, Perfluoroelastomer, Tetrafluoroethylene Propylene	Bearing grease, wide temperature range
MIL-P-27402	Ethylene Propylene	Propellant, Aerozine-50
MIL-H-27601	Fluorocarbon, Perfluoroelastomer, Tetrafluoroethylene Propylene	Hydraulic fluid, petroleum base, high temperature, flight vehicle
MIL-L-46167	Nitrile	Lubricating oil, internal combustion engine, arctic
MIL-H-46170	Fluorocarbon, Perfluoroelastomer, Tetrafluoroethylene Propylene	Hydraulic fluid, rust inhibited, fire resistant, synthetic
MIL-F-81912	Fluorocarbon, Perfluoroelastomer, Tetrafluoroethylene Propylene	Fuel, expendable, turbine engine
MIL-F-82522	Nitrile	Fuel, ramjet engine, T-H dimer Grade RJ-4
MIL-T-83133	--	Turbine fuel, aviation, kerosene type, Grade JP-8
MIL-H-83282	Nitrile, Fluorocarbon, Perfluoroelastomer, Tetrafluoroethylene Propylene	Hydraulic fluid, fire resistant, synthetic hydrocarbon base, aircraft

MILITARY SPECIFICATIONS

Specification	Durometer (± 5)	Polymer	Temperature (${ }^{\circ} \mathrm{C}$)	Description
$\begin{gathered} \text { ZZ-R-765E } \\ \text { Classes 1a, 1b, 2a, 2b } \\ \text { Grade } 40 \end{gathered}$	40	Silicone	-75 to 225	Resists low and high temps, low compression set
Classes 1a, 1b, 2a, 2b Grade 50	50	Silicone	-75 to 225	Resists low and high temps, low compression set
Classes 1a, 1b Grade 70	70	Silicone	-75 to 225	Resists low temps, low compression set
Classes 2a, 2b Grade 70	70	Silicone	-62 to 225	Resists high temps, low compression set
Classes 2a, 2b Grade 80	80	Silicone	-62 to 225	Resists high temps, low compression set
MIL-G-1149C				
Type I, Class 1	50	Chloroprene	-29 to 100	Gasket materials, synthetic Gasket materials, synthetic
Type II, Class 2	70	Styrene Butadiene	-29 to 100	Gasket materials, synthetic Gasket materials, synthetic
MIL-G-1149C Type I, Class 1 Type II, Class 2	70	Nitrile	-29 to 70	Synthetic rubber sheets, strips, and molded shapes
MIL-P-5315B	70	Nitrile	-54 to 71	O-ring; resists hydrocarbon
MIL-P-5510C	90	Nitrile	-43 to 71	Gasket, straight thread tube
$\begin{aligned} & \text { MIL-R-6855D } \\ & \text { Class 1, Grade } 60 \end{aligned}$	60	Nitrile	-54 to 100	Synthetic rubber sheets, strips, molded, or extruded; resists fuel, petroleum oil
Type B, Class 2 Grade 70	70	Chloroprene	-54 to 100	Synthetic rubber sheets, strips, molded, or extruded; resists petroleum oil, weather, ozone
MIL-R-7362D Types I, II			-54 to 135	Sheet, molded, and extruded; resists synthetic oil (diester base lubricant)

MILITARY SPECIFICATIONS

Specification	Durometer (± 5)	Polymer	Temperature (${ }^{\circ} \mathrm{C}$)	Description
MIL-G-21569B				
Class 1	70	Nitrile	Room Temp to 90	Gasket, cylinder liner seal, synthetic
Class 2	70	Silicone	Room Temp to 90	Gasket, cylinder liner seal,synthetic
MIL-P-25732C	75	Nitrile	-54 to 135	Preformed packing, resists
$\begin{aligned} & \text { MIL-R-25988 Type I, } \\ & \text { Class } 1 \end{aligned}$				
Grade 60	60	Fluorosilicone		
Grade 70	70	Fluorosilicone		
Grade 80	80	Fluorosilicone		
Type I, Class 3 Grade 75	75	Fluorosilicone		
MIL-P-82744	80	Ethylene Propylene	-54 to 120	Preformed packing, otto fuel compatible
Grade 80	70	Fluorosilicone Fluorosilicone		
MIL-R-83248C				
Type I, Class 1	75	Fluorocarbon		
Class 2	90	Fluorocarbon	-26 to 20	Resists high temperature fluids and compression
MIL-R-83485 Grade 80	80	Fluorocarbon		Improved low temperature performance
MIL-P-83461B	75	Nitrile	-54 to 135	Preformed packing, resists petroleum hydraulic fluid

AMS \& NAS SPECIFICATIONS

Specification	Durometer ($\pm 5)$	Polymer	Temperature (${ }^{\circ} \mathrm{C}$)	Description
AMS3201	40	Nitrile	--	Resists dry heat
AMS3205	50	Nitrile	--	Resists low temperatures
AMS3208	50	Neoprene	--	Resists weather
AMS3209	70	Neoprene	-40 to 108	Resists weather
AMS3212	60	Nitrile	--	Resists aromatic fuels
AMS3238	70	Butyl	--	Resists phosphate esters
AMS3240	40	Neoprene	--	Resists weather
AMS3301	40	Silicone	-65 to 204	General use
AMS3302	50	Silicone	-65 to 204	General use
AMS3303	60	Silicone	-65 to 204	General use
AMS3304	70	Silicone	-65 to 204	General use
AMS3305	80	Silicone	-65 to 204	General use
AMS3307	70	Silicone	--	Low compression set, non oil-resistant
AMS3325	60	Fluorosilicone	--	Resists fuel, oil
AMS3326	60	Fluorosilicone	--	Resists fuel, oil
AMS3337	70	Silicone	--	Resists very low temps
AMS3345	50	Silicone	--	--
AMS3357	70	Silicone	--	Resists Compression set and lubricating oil
AMS7257	75	Perfluoroelastomer	--	Resists high temperatures
AMS7259	90	Fluorocarbon	--	Resists high temperature fluid, very low compression set
AMS7267	75	Silicone	--	Resists high temps, low compression set
AMS7268	70	Silicone	--	Resists high temps, low compression set

AMS \& NAS SPECIFICATIONS

Specification	Durometer (± 5)	Polymer	Temperature (${ }^{\circ} \mathrm{C}$)	Description
AMS7271	65	Nitrile	-55 to 150	Resists phosphate esters
AMS7272	70	--	--	Resists synthetic lubricants
AMS7276	75	Fluorocarbon	--	Resists high temperature fluid, very low compression set
NAS1613	80	EPDM	--	O-ring; resists phosphate esters
AMS-P-5315	70	Nitrile	--	O-ring; resists hydrocarbon fuels
AMS-P-5510	90	Nitrile	--	Gasket, straight thread tube fitting boss
AMS-R-6855	60,70	Nitrile, Chloroprene	--	Synthetic rubber; resists synthetic oil
AMS-R-7362	70	Nitrile	--	Rubber; resists synthetic oil
AMS-P-25732	75	Nitrile	--	Preformed packing; resists petroleum hydraulic fluid
AMS-R-25988	55-85	Fluorosilicone	--	Resists oil, fuel
AMS-R-83248	70-95	Fluorocarbon	--	Resists high temp fluid, compression set
AMS-P-83461	75	--	--	Preformed packing; resists petroleum hydraulic fluid
AMS-R-83485	75	Fluorocarbon	--	Resists low temperatures

NSSPECIAL CONSIDERATIONS

SPECIALCONSIDERATIONS

```
"There are literally hundreds of hydrocarbons, trace metals, and
    additives in any given gallon of gasoline."
```

Though we have already discussed a variety of general use applications, there are a number of situations which will require special materials or quality assurance testing. Careful consideration should be made in each of these instances to find the most appropriate compound and/or testing procedure.

FUEL SERVICE

Designing an effective fuel service seal is not easy. Taken together, there are literally hundreds of hydrocarbons, trace metals, and additives (such as oxygenates, corrosion inhibitors, and detergents) in any given gallon of gasoline. Variances in crude oil processing and changes in the fuel during storage further complicate the picture. Though the variables are numerous, seal engineers are primarily concerned with two factors. The first is aromatic content. Aromatic hydrocarbons (those containing ringed carbons, such as benzene, toluene, and xylene) are used along with other additives (such as alkylates) to boost octane ratings in unleaded fuels. Higher ratings generally translate to increased engine efficiency. Unfortunately, aromatic hydrocarbons also cause greater elastomer swell compared to aliphatic hydrocarbons (those with straight-chain carbons, such as paraffins, olefins, and acetylenes) or other fuel constituents. The higher the aromatic content, the greater the potential swell. Since greater swell is linked to increased degradation of physical properties in elastomeric parts, aromatic content is one major concern.

The other major concern is the level of oxygenated additives (oxygenates), particularly alcohols and ethers. As with aromatic hydrocarbons, oxygenated additives raise octane numbers. Gasoline blends containing alcohols and ethers also extend the fuel supply and cut down on pollutants. The additional oxygen atomsthey provide allow cleaner engine combustion, thus producing less carbon monoxide (CO). Use of reformulated fuels containing oxygenated additives has been ordered by the Environmental Protection Agency (EPA) for cities with poor air quality. But oxygenates can be problematic for the seal designer. The presence of oxygenated additives in certain concentrations can make gasoline much more aggressive toward elastomeric compounds. This heightened aggression dramatically increases the likelihood that seals will be degraded to the point of failure.
The composition of fuels can thus have a number of effects on elastomers. As already noted, substantial volume change (most commonly elastomer swell) is a primary concern. Volume change is typically accompanied by changes in physical properties including hardness, tensile strength, modulus, and elongation. Resistance to tearing and to compression set are also impacted as a result of volume change. Increasing swell means hardness and these other physical properties will decrease. The elastomer's resistance to fuel permeation is another major consideration particularly in sealing applications. Even if permeability isn't a problem, the elastomer may face chemical attack from "sour" fuel. Often seen in fuel-injected automotive systems, soured fuel results when oxygen combines with hydrogen to form what are known as hydroperoxides (02 H groups). These hydroperoxides later break into free radicals which, because they have at least one unpaired electron, are "anxious" to chemically react. A prime target: the elastomer's chemical backbone. Depending on the circumstances, free radicals can cause the elastomer to become too soft (due to the breaking of chemical bonds, known as reversion) or too brittle (due to unwanted crosslinking; see Figure 54). Either way, the elastomer is compromised.
"SOUR" FUEL EFFECT

Figure 54: Embrittlement can be caused by unwanted crosslinking

SPECIAL CONSIDERATIONS

Additionally, compounds used in fuel systems must be able to withstand temperature extremes. Unless properly anticipated, high temperatures can contribute to other effects, especially elastomer swell and compression set. Low temperatures can be troublesome in dynamic applications.
Because fuel service can have such wide-ranging effects on elastomers, the American Society for Testing and Materials (ASTM) developed test method D 471 as a way to gauge the effects of fuels and other liquids on elastomeric samples. Samples are exposed to a fluid (e.g. Reference Fuel A) for a specific period of time (e.g. 70 hours) at a set temperature (e.g. $23^{\circ} \mathrm{C}$). After exposure, the sample's properties (e.g. hardness, tensile strength, elongation, and volume) are measured and compared with the properties as recorded prior to testing. Decisions can then be made as to the suitability of a particular compound for use with a given fuel.
ASTM Reference Fuels A through K have been specifically selected to test compounds in contact with gasolines or diesel fuels. Which tests are called for depends on which fluid(s) the elastomer will encounter. For example, Reference Fuel A is a 100% isooctane fluid which mirrors the shrinking or low-swell effects of gasolines composed primarily of aliphatic hydrocarbons. If the compound in question will be used around gasolines with a very high aliphatic content, then a test using Reference Fuel A is a good idea. Reference Fuel B is a 70% isooctane-30\% toluene mixture. The toluene content lends the mixture a level of aromaticity, enabling Reference Fuel B to approximate the swelling effects of commercial gasolines. The ASTM Reference Fuels are listed in Table 17.

Peroxide-curable, high fluorine content fluorocarbon rubber (FKM) is currently the most common choice for fuel service. High fluorine content fluorocarbons traditionally have poor low temperature resistance, but Type GFLT fluorocarbons have improved low temperature properties similar to Type GLT in combination with fluid resistance analogous to Type GF. In lieu of fluorocarbon, some nitrile (NBR) compounds may be suitable, provided they have a high acrylonitrile (ACN) content to bolster fuel resistance. Epichlorohydrin rubber (ECO) is also used for fuel service, but it does not perform as well as fluorocarbon or nitrile, especially in sour fuel hydroperoxides.

Reference Fuel Type
A
Composition (Volume \%)
Isooctane (100)

Isooctane (70), Toluene (30)
Isooctane (50), Toluene (50)

Isooctane (60), Toluene (40)
Toluene (100)
E

Diesel Fuel, Grade 2 (100)
Fuel D (85), Anhydrous Denatured Ethanol (15)

Fuel C (85), Anhydrous Denatured Ethanol (15)

FOOD \& BEVERAGE USES

The U.S. Food and Drug Administration (FDA) has compiled a "white list" of materials that it deems acceptable for use in food and beverage industry seals. This list can be found in Title 21 of the Code of Federal Regulations, Section 177.2600. To meet FDA requirements, materials must be both non-toxic and non-carcinogenic. Elastomers that appear most often in white list compounds include silicone, fluorocarbon, nitrile, ethylene propylene, and chloroprene.
Founded over fifty years ago as the National Sanitation Foundation, NSF International fosters public safety and environmental protection by developing standards, certifying services, and testing products. For example, rubber compounds designed to come into contact with potables (such as drinking water) can be submitted to NSF for water extraction analysis and many other tests. The most well known tests are NSF 51 for articles contacting food and NSF 61 for articles contacting water. Materials passing such tests are certified as meeting NSF standards. NSF does both stand-alone and component testing, meaning they evaluate articles by themselves and as parts of larger designs.
NewDealSeals offers a number of NSF 61-certified compounds.

HIGH PRESSURE DANGER

Figure 55: Failure due to Explosive Decompression

GAS PERMEATION

Several factors can affect the degree to which a seal is gas permeable. Use of lubrication decreases permeability, as does applying greater squeeze. Use of harder compounds and smaller cross-sections can also help reduce permeability. Butyl rubber allows the least gas permeation. Tetrafluoroethylene (PTFE), chloroprene, epichlorohydrin, polyurethane, nitrile, and fluorocarbon are also good choices. Silicone and fluorosilicone allow the most gas permeation.
In applications involving pressures of 500 psi or higher, compressed gases enter through flaw sites on the seal's surface and fill the O-ring's micropores until equilibrium is reached. During an equilibrium shift (as during decompression), the gases expand, creating blisters in lower durometer 0-ring compounds and fractures in harder compounds (see Figure 55). Instances of such "explosive decompression" can be reduced through careful choice of materials. Harder, high shear modulus compounds have the most resistance to explosive decompression because they have the strength to dissipate the fracture energy as it propagates through the O-ring. For contact with carbon dioxide (CO2), such as in air guns, polyurethane is definitely the best choice. For more on explosive decompression see Diagnosing O-Ring Failure: Explosive Decompression.

PLASTIC SURFACES

Because plastic parts are being used more and more as alternatives to metal components, you should be aware that sealing against a plastic surface may present some special problems. The hardness or chemical makeup of an O-ring can cause fine surface cracks to form in adjacent plastic parts. This "crazing" of the plastic is often the result of ester plasticizers (chemical substances added to increase softness, provide low temperature flexibility, and improve processing) in the O-ring compound and may ultimately cause the plastic part to fail. Ethylene propylene, chloroprene (Neoprene®), nitrile, and silicone have all been used successfully in conjunction with plastics such as Noryl® (modified polyphenylene oxide, or PPO), Cycolac T® (ABS thermoplastic), and Lexan® (thermoplastic polycarbonate).

SEMICONDUCTOR INDUSTRY

Because of the aggressive chemicals in use and the need to exclude
microcontaminants, the semiconductor industry offers some real challenges. Seals used in the production of integrated circuits (ICs) must withstand harsh fluids while resisting extraction. Several companies have developed fully-fluorinated compounds for use in wet chemical, dry chemical, vacuum, and plasma applications. These companies include DuPont (Kalrez® Ultrapure); Greene, Tweed (Chemraz®); and NewDealSeals (Fluorezi®).
Regardless of the manufacturer, it's important to note that black, carbon-filled compounds are most susceptible to having parts of their chemical make-up extracted by system fluids. This "leaching" of the material leads to seal shrinkage and may result in seal failure. For this reason, white or clear compounds making use of other fillers (such as barium sulfate or PTFE) are typically used in applications where shrinkage is a big concern. Fluorocarbons (such as Viton®), fluorosilicones, and ethylene propylene are also used in semiconductor production. Fluorosilicones and EPDM are seeing less use, however, because they do not function as cleanly as either perfluoroelastomers or fluorocarbons.

UNDERWRITERS LABORATORIES

The Underwriters Laboratories test and approve a wide variety of commercial and industrial products submitted by more than 40,000 manufacturers and product developers worldwide. The formal submission process begins by contacting a client advisor, who helps direct the submission toward an appropriate project engineer. The submission itself consists of several items, including a product sample, written description, statement of intended use, list of possible variations, list of components and materials (including alternates), diagrams and/or pictures, any manuals that will accompany the final product, applicant contact information, desired listing information (pending approval), and results of any prior testing by either UL or other testing services. The project engineer uses these items to oversee both initial testing and follow-up reviews.
Included among the products that Underwriters Laboratories typically review are elastomeric compounds formulated for specific uses. The Recognized Component Directory lists all the compounds tested and approved by UL. Available for purchase from UL, this annual directory includes characteristic information (such as hardness, tensile strength, and elongation) on numerous materials in various product categories (such as "Gaskets and Seals"). Thanks to the diversity of our factories, NewDealSeals can provide you with a wide variety of UL-approved compounds.
"Specifying your elastomer choice via a standardized line call-out is a good idea because it allows the flexibility of using different manufacturers' compounds while ensuring that the material quality and performance stay consistent."

Having discussed the properties and uses of the most common elastomer types, the question then becomes: How can these properties be succinctly specified when an existing compound is being selected or when a new compound must be formulated?

In order to provide guidance in the selection of vulcanized rubber materials, and to provide a method for specifying these materials by the use of a simple line call-out specification, the American Society for Testing and Materials (ASTM) and the Society of Automotive Engineers (SAE) established ASTM D 2000 / SAE J200. Though these standards are virtually identical, J200 finds its widest use within the automotive industry. D 2000 is the more common tool among rubber manufacturers. Specifying your elastomer choice via a standardized line call-out is a good idea because it allows the flexibility of using different manufacturers' compounds while ensuring that the material quality and performance stay consistent.
ASTM D 2000 is based on the premise that the properties of all rubber products can be arranged into characteristic material designations. These designations are determined by types, based on resistance to heat aging, and classes, based on resistance to swelling.

ASTM D 2000-95 M2BG714 B14 EA14 EF11 EF21 EO14 EO34 Z1 Z2

Here is the line call-out, or specification, for a 70 (Shore A) durometer nitrile:
This line call-out contains the following:
A. The document name (ASTM D 2000-95). The two-digit number following the hyphen indicates the revision year (in this case, 1995).
B. The letter " M " may or may not be present. Since it is present in our example, the units of measure in the line call-out (and in any other documentation, such as a test report) are understood to be stated in SI (metric) units. For example, tensile strength is in megapascals (MPa). If the " M " was not present, English units would be in use. For example, tensile strength would be in pounds per square inch (psi).
C. The Grade Number defines specific added test requirements which are desirable in cases where the basic requirements do not always sufficiently ensure an acceptable material. Grade 1 indicates that only the basic requirements are compulsory; no suffix requirements are permitted. All other grades and test requirements are listed in Table 6 of the D 2000 document. In our example, the material is Grade 2.
D. The Type is based on changes in tensile strength of not more than 30%, elongation of not more than -50%, and hardness of not more than ± 15 points after heat aging for 70 hours at a given temperature. The temperatures at which these materials shall be tested for determining type are listed in Table 18. In our example, the material is Type B_{1} which corresponds to a $100^{\circ} \mathrm{C}$ test temperature.
E. The Class is based on the material's resistance to swelling in Industry Reference Material (IRM) 903 Oil (now used in lieu of ASTM Oil \# 3, which was discontinued due to requirements by the Occupational Safety and Health Administration). Testing involves immersion for 70 hours at the temperature previously determined from Table 18 (100° C), after which swell is calculated. Limits of swelling for each class are shown in Table 19. In our example, the material is Class G, indicating a maximum swell of 40%. Be aware that ASTM Oil \# 3 and IRM 903 Oil are similar but not identical, so complete equivalency among results is not possible. For information on converting ASTM oil swell values to IRM values, please refer to ASTM Emergency Standard ES 27-94. Table 20 below lists the D 2000 material designations (type and class) and the elastomers most often used for each.
F. The next three digits (in this case, "714") specify the hardness and tensile strength The first digit indicates Shore A durometer. For example, 7 for 70 ± 5. The next two numbers indicate the minimum tensile strength, i.e. 14 for 14 MPa . Remember, this will be in SI units if the letter " M " is in the call-out, and English units if not. To convert to psi, simply multiply the MPa number by 145 . In this case, 14 MPa would convert to 2,030 psi.

Type	Test Temperature $\left({ }^{\circ} \mathrm{C}\right.$)	Class	Volume Swell (Maximum \%)
A	70	A	No requirement
B	100	B	140
C	125	C	125
D	150	D	100
E	175	E	80
F	200	F	60
G	225	G	40
H	250	H	30
J	275	K	20
K	300		10

Table 18: Basic Requirements for Establishing Type by Temperature

Table 19: Basic Requirements for Establishing Class by Volume Swell

MPa x 145 = psi psi / 145 = MPa

UNDERSTANDING ASTM D 2000 / SAE J200

Material Designation	Most-Used Elastomer(s)
AA	Natural Rubber
BA	Ethylene Propylene
BC	Neoprene®
BE	Neoprene®
BF	Nitrile
BG	Nitrile, Polyurethane
BK	Nitrile
CA	Ethylene Propylene
CH	Nitrile
DA	Pthlene Propylene
DF	Polyacrylate
DH	Vamac®
EF	Silicone
FC	Silicone
FE	Fluorosilicone
FK	Silicone
GE	Viton®
HK	

Table 20: Material Designations \& Most-Used Elastomers
G. Suffix letters and suffix numbers follow the hardness and tensile strength specifications to provide for additional testing requirements. The meaning of each suffix letter is shown in Table 21. For example, the "B" of "B14" specifies a compression set test. Suffix letters are typically followed by two suffix numbers. The first number always indicates the test method, and the second indicates the test temperature. The suffix numbers are covered by Tables 4 and 5 of the D 2000 document. For example, the " 1 " specifies a 22-hour compression set test as detailed in D 395 (Method B) for solid test specimens, and the " 4 " specifies testing at $100^{\circ} \mathrm{C}$. Keep in mind that in some cases, the second suffix number may be two digits, which means you might see something like "F110." F110 would indicate a 3-minute low temperature resistance test as detailed in ASTM D 2137 (Method A) and conducted at a temperature of $-65^{\circ} \mathrm{C}$.
That's all there is to understanding the D 2000 / J200 call-out system. It is one of the most versatile specifications in the rubber industry. In addition to helping you specify compounds, familiarity with the system will also help you make sense of material test reports. Let's take a closer look at a sample report next.

A	Heat Resistance
B	Compression Set
C	Ozone or Weather Resistance
D	Compression Deflection Resistance
EA	Fluid Resistance (Aqueous)
EF	Fluid Resistance (Fuels)
EO	Low Temperature Resistance (Oils \& Lubricants)
F	Tear Resistance
G	Flex Resistance
H	Abrasion Resistance
K	Flammability Resistance
M	Impact Resistance
P	Staining Resistance
R	Resilience
Z	Any Special Requirement (e.g. "Resistance to Marking")

Table 21: The Meaning of Suffix Letters

ANATOMY OF A TEST REPORT

> "Provided these tests mirror the anticipated service conditions, you can use them to make an informed decision regarding the compound's suitability for your application."

Many manufacturers provide material test reports (also known as technical reports or specification sheets) as a service to aid their customers. These reports show the performance of a cured rubber compound when subjected to a variety of standardized ASTM tests. Provided these tests mirror the anticipated service conditions, you can use them to make an informed decision regarding the compound's suitability for your application.

To help you better understand just how much test reports can tell you, let's take a closer look at a sample report whose subject is the same 70 (Shore A) durometer nitrile compound that we dealt with in "Understanding ASTM D 2000 / SAE J200." As we go through the report line by line, you'll find references to many of the most commonly used ASTM tests. Keep in mind, however, that not every report you see will (or should) cover all of these tests. We're including them here simply to help you get better acquainted with as many tests as possible.
A. This first line tells you the absolute basics: you are looking at a test report of a nitrile compound that has a durometer hardness of 70 (Shore A).
B. The next item lists all of the ASTM specifications to which the material conforms. Each of these are defined individually during the course of the report, but for now, just recall from "Understanding ASTM D 2000 / SAE J200" that each line call-out entry corresponds to a particular test. For example, "EA14" is an ASTM D 47170 -hour water resistance test conducted at $100^{\circ} \mathrm{C}$.
C. "Original properties" are the initial attributes of the material. Information in this and all subsequent entries is broken into two columns: the "specification" (what is required to be acceptable) and the properties (or response) of the nitrile. There are six different original properties on this report: 1) Hardness, 2) Tensile Strength, 3) Elongation, 4) Modulus at 100%, 5) Tear Resistance, and 6) Specific Gravity. Note that specific gravity (SG) is not specified on the report; rather, it is a reported figure to be used as a quality control criterion. The SG of (1.25) is understood relative to water's SG of 1.00 . The nitrile is 25% heavier than water.
D. The first test on this report is "heat resistance" (also known as heat aging or air aging). Per the line call-out, our nitrile is a Grade 2 " BG " compound. This would normally send you to the D 2000 or J200 documents, where you would turn to the "BG Materials" section of Table 6 and see data similar to that shown in Table 22. You'll see that "A14 is the suffix designation for "heat resistance" as gauged by ASTM D 573, a 70-hour test conducted at $100^{\circ} \mathrm{C}$.
Why, then, is A14 not listed among the additional suffix requirements in this material's line call-out? It is omitted from the call-out because there are no A14 specifications for Grade 2 BG compounds. In Table 22, the Grade 2 column across from row A14 is empty, so the heat resistance specifications column in our sample report is blank. When there are no specifications, a material cannot be said to "conform" to a given test, and the corresponding suffix designation is not listed in the call-out. We've chosen to include heat resistance on this report because it is a common test used to gauge resistance to oxidation and thermal attack over time. You'll no doubt see it regularly on test reports, and it will likely be specified in three properties: 1) Hardness Change, 2) Tensile Change, and 3) Elongation Change.

ANATOMYOFA TEST REPORT

	Suffix Requirements	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5
A14	Heat resistance, Test Method D 573,70 h at $100^{\circ} \mathrm{C}$:					
	- Change in hardness, max, points				± 5	15
	. Change in tensile strength, max, \%				± 15	-20
	- Change in ultimate elongation, max, \%				-15	-40
B14	Compression set, Test Methods D 395, Method B, max, \%, 22 h at $100^{\circ} \mathrm{C}$		25	50	50	25
B34	Compression set, Test Methods D 395, Method B, max, \%, 22 h at $100^{\circ} \mathrm{C}$		25			25
C12	Resistance to ozone, Test Method D 1171, quality retention rating, min, \%			*	*	
EA14	Water resistance, Test Method D 471, 70 h at $100^{\circ} \mathrm{C}$:					
	- Change in hardness, points		± 10			
	- Change in volume, \%		± 15			
EF11	Fluid resistance, Test Method D 471, Reference Fuel A, 70 h at $23^{\circ} \mathrm{C}$:					
	-Change in hardness, points		± 10			
	- Change in tensile strength, max, \%		-25			
	- Change in ultimate elongation, max, \%		-25			
	- Change in volume, \%		-5 to +10			
EF21	Fluid resistance, Test Method D 471, Reference Fuel B, 70 h at $23^{\circ} \mathrm{C}$:					
	-Change in hardness, points		0 to -30			
	- Change in tensile strength, max, \%		-60			
	- Change in ultimate elongation, max, \%		-60			
	- Change in volume, \%		0 to +40			
E014	Fluid resistance, Test Method D 471, No. 1 Oil, 70 h at $100^{\circ} \mathrm{C}$:					
	- Change in hardness, max, points		-5 to +10	-7 to +5	-7 to +5	-5 to +15
	- Change in tensile strength, max, \%		-45	-20	-20	-25
	- Change in ultimate elongation, max, \%		-45	-40	-40	-44
	- Change in volume, \%		-10 to +25	-5 to +10	-5 to +5	-10 to +5

ANATOMY OFA TEST REPORT

	Suffix Requirements	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5
E034	Fluid resistance, Test Method D 471, No. 3 Oil, 70 h at $100^{\circ} \mathrm{C}$:					
	- Change in hardness, points		-10 to +5	-10 to +5	-10 to +5	0 to -15
	-Change in tensile strength, max, \%		-25	-35	-35	-45
	- Change in ultimate elongation, max, \%		-45	-40	-40	-45
	- Change in volume, \%		0 to +25	+16 to +35	0 to +6	Oto +35
F16	Low-temperature brittleness, Test Methods D 2137, Method A, 9.3.2, nonbrittle after 3 min at $-35^{\circ} \mathrm{C}$					
F17	Low-temperature brittleness, Test Methods D 2137, Method A, 9.3.2, nonbrittle after 3 min at $-40^{\circ} \mathrm{C}$		pass			
F19	Low-temperature brittleness, Test Methods D 2137, Method A, 9.3.2, nonbrittle after 3 min at $-55^{\circ} \mathrm{C}$			pass	pass	pass
$\text { ble } 2$	2: Sample Suffix and Grade Requirements					

ANATOMY OFA TEST REPORT

E. The second test is "compression set" (B14 in the line call-out) as determined by ASTM D 395, a 22 -hour test conducted at $100^{\circ} \mathrm{C}$. This report lists one property specification related to compression set: Percent of original deflection, which is specified at a 25% maximum. In this instance, the test specimen takes a 14% set. Be aware that a number of factors other than the compound itself can greatly affect compression set results, including the test temperature and the sample thickness.
F. The third test is "water resistance" (EA14 in the line call-out) as determined by ASTM D 471, a 70 -hour test conducted at $100^{\circ} \mathrm{C}$. This report lists two property specifications related to water immersion: 1) Hardness Change and 2) Volume Change.
G. The next four tests gauge fuel and oil resistance (EF11, EF21, EO14, and EO34 in the line call-out). In each case, there are four property specifications: 1) Hardness Change, 2) Tensile Change, 3) Elongation Change, and 4) Volume Change. Per J200 / D 2000, EF 11 is the suffix designation for ASTM D 471, a 70 -hour test conducted at $23^{\circ} \mathrm{C}$ using Reference Fuel A. That's good to know, but you're probably wondering what EF11 and the other fluid resistance tests can really tell you about a compound.
Put simply, fluid resistance tests give you an indication of how the compound will react when brought in contact with fuels and oils. In most cases, the primary concern is swelling, though compound degradation is also common. Recall that volume changes (either swell or shrinkage) are typically accompanied by changes in physical properties, including hardness, tensile strength, modulus, elongation, tear resistance, and compression set.
ASTM Reference Fuels A through K (see Table 23) have been specifically selected to test compounds in contact with gasolines or diesel fuels. Which tests are called for depends on which fluid(s) the seal will encounter. For example, Reference Fuel A (used in the EF11 test) is a 100% isooctane fluid which mirrors the shrinking or low-swell effects of gasolines composed primarily of straight-chain aliphatic (rather than ringed aromatic) hydrocarbons. If the compound in question will be used around gasolines with a very high aliphatic content, then an EF11 test is a good idea. Reference Fuel B (used in the EF21 test) is a 70% isooctane- 30% toluene mixture. The toluene content lends the mixture a level of aromaticity, enabling Reference Fuel B to more closely approximate the swelling effects of commercial gasolines.

Figure 56: Density Meter

Figure 57: Thermogravimetric Analyzer
The other two fluid resistance tests on this report are based on shrinking or swelling in lubricating oils rather than fuels. EO14 is the suffix designation for another ASTM D 471 test, this one lasting 70 hours and conducted at 100° C using Number 1 Oil. E014 is commonly used to gauge elastomer shrinkage. The time and temperature requirements for EO34 are identical to E014, with the exception that Industry Reference Material (IRM) 903 is used rather than Number 1 Oil. E034 is a common tool for gauging elastomer swell. As with the Reference Fuels, the choice of oils in testing is not arbitrary. Rather Number 1 Oil and IRM 903 are used because they have an aniline point similar to the aniline point of a fluid to be found in service.
The aniline point is the lowest temperature at which equal volumes of aniline (an oily, colorless, and poisonous organic liquid derived from benzene) and the oil will completely dissolve in one another. The aniline point is actually a good measure of the aromatic content, or the amount of unsaturated hydrocarbons present in the oil. The higher the level of unsaturants, the more easily the organic aniline can "step in" to combine with the oil, and thus the aniline point will be low. A low aniline point is important because it translates to a higher potential for swelling certain rubber compounds.

Number 1 Oil has the highest aniline point $\left(124^{\circ} \mathrm{C} \pm 1^{\circ}\right)$ of the ASTM test oils, meaning it typically causes the least amount of rubber swell. As is clear by looking at the EO14 volume change specification (-10% to $+5 \%$), Number 1 Oil actually has the potential to cause more shrinkage than swell. Testing with Number 1 Oil is thus a common tool for gauging oil-induced shrinkage due to plasticizer extraction. IRM 903, on the other hand, has the lowest aniline point $\left(70^{\circ} \mathrm{C} \pm 1^{\circ}\right)$ among the test oils and typically causes the greatest swell. Be aware that IRM 903 is used in lieu of the now-obsolete Number 3 Oil for EO34 testing.
H. The eighth test is "impact brittleness" (also known as low-temperature brittleness; Zl in the line call-out). Note that this is a three-minute test conducted at $-25^{\circ} \mathrm{C}$. Per ASTM D 2137 (Method A), low temperature tests are normally conducted at $-35^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$, or -55° C. For example, if this test had been conducted at $-40^{\circ} \mathrm{C}$, F 17 would have been noted in the line call-out. Because this test was conducted at a non-standard temperature (-25° C), it is noted in the line call-out using a special "Z" suffix. (Per D 2000 / J200, special suffix requirements begin with a "Z" and must be specified in detail, including test methods.) Our report has one specification related to Zl , which is conducted on a passfail basis only: No cracks in the material after it is struck once. The compound passes this test.
On some reports, you may also see a "temperature retraction" TR-10 listing. Though TR-10 is not covered by a D 2000 suffix, ASTM D 1329 does detail TR-10 as a way to gauge a compound's crystallization and visco-elastic properties at low temperatures. In this case, specification is for the material to remain viable at $-25^{\circ} \mathrm{C}$. The compound passes this test. For more on TR-10 testing, see Quality Assurance: Low Temperature Effects.

Reference Fuel Type	Composition (Volume \%)
A	Isooctane (100)
B	Isooctane (70), Toluene (30)
C Isooctane (50), Toluene (50)	
D Isooctane (60), Toluene (40)	
E	Toluene (100)
F	Diesel Fuel, Grade 2 (100)
G	Fuel D (85), Anhydrous Denatured Ethanol (15)
H (85), Anhydrous Denatured Ethanol (15)	
I	Fuel C (85), Anhydrous Methanol (15)
K	Fuel C (15), Anhydrous Methanol (85)

Figure 56: ASTM Reference Fuels

ANATOMYOFA TEST REPORT

. The ninth test is another special stipulation required by the user of the material (Z2 in the line call-out). In our example, "Z2" is "resistance to marking." There is one specification related to this test, which is conducted on a pass-fail basis only: Nonmarking by the material. That is, the compound should not leave any mark when wiped on white paper with a 0.03 MPa contact pressure. The compound passes this test. In some instances, a Z suffix may be used for something as basic as a hardness reading, as with the specification for a 75 (Shore A) durometer fluorocarbon. Because the line call-out system only allows three digits for both durometer and tensile strength (as with "714" indicating a 70 durometer material with a tensile strength of 14 MPa), it is not possible to specify a 75 durometer material in this way. A special Z suffix would be needed.

TEST REPORT

A.

Compound: Example Nitrile 70 Durometer
Conformance to: ASTM D 2000-95, M2BG714, B14, EA14, EF11, EF12, EO14, EO34, Z1, Z2
c. ORIGINAL PROPERTIES Tardness, Durometer Elongation, \%
Modulus at 100%, MPa Tear Resistance, kN/m Specific Gravity
D. A14-HEAT RESISTANCE-70 hrs at $100^{\circ} \mathrm{C}$ Hardness Change, Points
Tensile Change
Elongation Change, \%
E. BI COMPRESSION SET - 22 hrs at $100^{\circ} \mathrm{C}$ \% of Original Deflection

SPECIFICATION	TESTED
70 ± 5	70
14 min	15.9
250 min	370
11 min	12.1
20 min	35
--	1.25
-	2
-	14
-	-11
25 max	14
± 10	-2
± 15	3
± 10	-2
-25 max	-10
-25 max	-10
-5 to +10	+1

"Batch testing is vital in ensuring consistency among finished parts."

When one of our suppliers mixes or buys a batch of rubber, a batch number is automatically assigned. But before it can be molded into usable parts (such as O-rings), the batch must be tested to make sure it is a "good batch," i.e. that its physical properties meet specifications. Batch testing is vital in ensuring consistency among finished parts.

To test a batch of rubber's physical properties, a sample of the material is molded into slabs. These slabs are then cut into the various shapes needed to test for hardness, tensile strength, modulus, elongation, and compression set. All of these tests are described in the Physical Properties section of "Selecting the Material." Specific gravity is also often measured, though more as a check on compounding consistency than as a physical test. Per ASTM D 792, specific gravity (or relative density) compares the weight of a molded sample to the weight of an equal volume of water. Specific gravity (SG) is noted without units. If a material is twice as heavy as water, its specific gravity is 2 . Using the specific gravities of previously-molded compounds for comparison (e.g. a material may have an SG of 0.86 , or less than that of water), a manufacturer can see if a sample is consistent with prior batches
If the tested physical properties of a batch of rubber meet all specifications, the batch is approved for production of 0 -rings or other articles. If the properties are not satisfactory, the batch must either be reworked (broken down and reformulated) or scrapped. Scrapping an entire batch of rubber and starting over can be very costly and is thus a last resort. But even if the compound's physical properties are acceptable, it must still meet processing requirements in order to be ready for use in a specific molding facility.

TOOLS FOR TESTING

At one time, the Mooney Viscometer was the most common tool used to determine the processing characteristics for a given batch of rubber. Many compounders still use the Mooney to verify viscosity (which is indicative of molecular weight) when obtaining raw polymer stock. This works because a compound's resistance to being moved by the Mooney's internal rotor is directly linked to its viscosity. The viscometer's previous role as the chief indicator of processing traits, however, has now been usurped by the rheometer.
There are two main types of rheometers currently in use: the ODR and the MDR. The older of these, the Oscillating Disk Rheometer (ODR, see Figure 58), builds on the Mooney Viscometer's rotor-based design. An ODR gauges the amount of torque (twisting force in pounds per inch, lb/in, or decinewtons per meter, dN / m) needed to oscillate a rotor within the rubber sample. Whereas a viscometer rotor relies on full rotation, the ODR rotor only moves back and forth across a small arc. This oscillation is less degrading to the material than in the viscometer, where destruction of the sample is typical.

ODR test results are also more reflective of actual cure conditions because constant high pressure and the desired vulcanization temperature are maintained on the sample. As testing progresses, the sample begins to behave in predictable ways. Viscosity briefly drops as the sample first heats up, but the chemical reaction soon starts. The rubber becomes more viscous due to crosslinking of the macromolecular chains. As a result, the amount of torque that is required to internally shear (deform) the sample increases. Using this increasing torque as a gauge, the ODR plots a cure curve (see Table 24) illustrating the state of cure for a given time and temperature.
Though the Monsanto ODR was for many years the most-used rheometer, a more recent development is the Moving Die Rheometer (MDR). Whereas the ODR uses an embedded rotor to torque the rubber sample, an MDR holds the sample between a pair of heated dies (metal plates forming a cavity). As one of the dies moves across a small arc, the other die gauges the reaction torque generated in the sample. This again results in a cure curve that can show the optimum cure time for the desired blend of properties. Since the MDR does not insert a rotor into the sample, many molders feel the MDR is less intrusive to the curing process and thus more objective and accurate than the ODR.

Table 24: ODR-plotted Cure Curve

Figure 59: Multi Cavity Mold

DETERMINING CURE TIMES

Whether generated by an ODR (Oscillating Disk Rheometer) or an MDR (Moving Die Rheometer), a cure curve is essentially "torque versus time (at a given temperature)." The torque value is a direct indication of the sample's shear modulus (resistance to shearing deformation). A number of processing characteristics can also be read, including the minimum pressure needed to make the material flow properly into the mold cavity, scorch time (prior to vulcanization), optimum cure time (typically 85 to 95% of maximum cure), and maximum cure (prior to over cure). Keeping the initial cure slightly below the maximum helps avoid over cure by allowing leeway for any necessary post cure (controlled continuation of vulcanization to finish cure, drive off byproducts, and stabilize) or inadvertent after cure (uncontrolled continuation of vulcanization after heat is removed).

Though specific vulcanization questions can be answered via a cure curve, rheometers also help molders address more general concerns about processibility and consistency. No matter what the cure curve says, "optimum" cure time is largely a matter of economics. There is no "universal" cure time for a compound. A batch of rubber may have different cure times if given to different molders, depending on their capabilities. The old adage about time being money is especially true when it comes to cycle time (the time between a given point in one molding cycle and the same point in the next cycle; e.g. loading of raw stock, through molding and unloading of finished parts, then to reloading; see Figure 59). Generally speaking, the longer the cycle time, the more expensive the process and the more costly the part. As a cost-cutting measure, manufacturers may increase mold temperature to decrease cure time. $\mathrm{A} 10^{\circ} \mathrm{C}$ boost can cut cure time in half, but this is not always advantageous. Sometimes the ratio of the time the mold is open (for unloading and reloading) to the time the mold is closed and in the press allows the mold temperature to dip below what is needed for full vulcanization. Partially-vulcanized, unusable parts can result.
Again, consistency among different batches of the same material is always a concern. The cure curve can serve as a "fingerprint" for a given batch of rubber. By comparing cure curves, it is possible to see if the properties present in one batch are present in another. Because wasted processing can be costly in terms of both time and money, compounding errors are much more economically spotted in batch testing than in subsequent stages of quality control, such as vulcanizate testing.

ASSIGNING CURE DATE

Quality control is aided by the batch number that was initially assigned to the rubber. This number follows the batch as it makes its way through the manufacturing process. When the batch (or a portion of it) is molded, a cure date is also assigned. This cure date consists of the quarter and year in which the parts are molded. For example, all parts molded in March of 2014 have a cure date of 03-14. Parts molded in December of 2014 have a cure date of 12-14. Both the batch number and cure date stay with the part through to the end user, thus assuring that complete traceability is maintained.
 M $10 x^{1}$

QUALITY ASSURANCE

Q
 UALITY ASSURANCE

"Our objective is to seek out continuous improvement so as to cost effectively provide our customers with a product line of the highest available quality."

We are proud to say that NewDealSeals is a preferred supplier of fluid sealing devices and custom-molded rubber, plastic, and polyurethane products for a diverse group of manufacturers. As such, we have attained a worldwide reputation with commercial establishments as an organization committed to customer satisfaction.

Recognizing that quality is not only conformance to established acceptance standards, NewDealSeals is dedicated to being responsive to the ever-changing needs of our customers. Additionally, one of our prime objectives is to seek out continuous improvement so as to cost effectively provide our customers with a product line of the highest available quality.
In accordance with global Quality Assurance's movement toward one unified International Standard, it is our policy to assure process integrity by operating to a Quality System defined by ISO 9001
As part of this system, we established our own in-house Quality Assurance department (see Figure 60) whose sole purpose is to oversee the inspection of the products we offer, including O-ring seals. We feel strongly that having our own Quality Assurance department is a wise investment in the ultimate success of our customers' applications What follows is an overview of the ten most common types of O-ring surface What follows is an overview of the ten most common types of O-ring surface industrial) in each case.

Figure 60: Automatic Inspection Machines

B A CKRIND

```
"Backrind is typified by a longitudinal recess found at the parting
    lines."
```

Backrind is typified by a longitudinal recess (shaped like a wide-angle "U" or "W") found at the parting lines on the seal's O.D. and/or I.D. (see Figure 61). This recess may sometimes exist on the entire circumference of the 0 -ring. Backrind can result from the thermal expansion of material over a sharp mold edge. It can also be caused by premature curing of the material. (For maximum acceptable backrind, see Table 25.)

Figure 61: Found the OD and/or ID

AS568A	O-Ring Width		Military (per MIL-STD 413C)		Industria	(per RMA)
Series	Inches	Millimeters	Inches	Millimeters	Inches	Millimeters
0	<. 100	<2.54	. 000	. 000	.005 wide .003 deep	.127 wide . 076 deep
100	.100-. 134	2.54-3.42	.005 wide 003 deep	.127 wide .076 deep	.007 wide 003 deep	.178 wide .076 deep
$200 \& 300$.135-. 268	3.43-6.81	.006 wide 004 deep	.152 wide .102 deep	.008 wide 004 deep	.203 wide .102 deep
400	. $269-.281$	6.82-7.14	.010 wide .005 deep	.254 wide .127 deep	.015 wide .005 deep	.381 wide .127 deep

Table 25: Maximum Amount of Acceptable Backrind

EXCESSIVE TRIMMING (BUFFING)

"Excessive trimming is typified by a flattened area on the seal's $O D$
and/or ID."

Excessive trimming is typified by a flattened area on the seal's O.D. and/or I.D. (see Figure 62). This flattening results in an out-of-tolerance (I.D. to O.D. measurement) condition. Keep in mind that problems can result even if "excessive" trimming is avoided. Imperfect trimming or buffing to remove flash can result in a much coarser seal surface. Both excessive trimming and buffing are the result of improper removal of flash. (For maximum acceptable trimming, see Table 26.)

EXCESSIVE TRIMMING

Figure 62: On the OD and/or ID

AS568A	Minimum Cross-Section	
Series	Inches	Millimeters
0	.067	1.70
100	.100	2.54
200	.135	3.43
300	.205	5.20
400	32	6.84
Sulfur	35	2
Chlorine		1

Table 26: Minimum Cross-Sections

FLOWMARKS

"Flow marks are shallow, thread-like recesses in the surface of the seal."

Flow marks are shallow, thread-like recesses in the surface of the seal (see Figure 63). Flow marks are typically curved and have rounded edges. Flow marks result from improper flowing and premature curing of the material in the mold. (For maximum acceptable flow marks, see Table 27.)

FLOW MARKS

Figure 63: Typically curved, with Round Edges

AS568A	O-Ring Width	Military (per MIL-STD 413C)	Industrial (per RMA)		
Series	Inches	Millimeters	Inches	Millimeters	Inches

Table 27: Maximum amount of Acceptable Flow Marks

FOREIGN MATERIAL

"Foreign material may be any superfluous material embedded in the seal."

Foreign material may be any superfluous material (such as dirt, grit, and particulate matter) embedded in the seal (see Figure 64). Foreign material also refers to any residual indentation in the seal resulting from the removal of such unwanted matter Contamination of the material, either prior to or during molding, is the cause. (For maximum acceptable foreign material, see Table 28.)

FOREIGN MATERIAL

Figure 64: Embedded in the Seal

AS568A	O-Ring Width		Military (per MIL-STD 413C)		Industrial (per RMA)
Series	Inches	Millimeters	Inches	Millimeters	Inches Millimeters
0	<. 100	<2.54	. 002 deep	. 05 deep	
			. 060 long	1.52 long	
100	.100-. 134	2.54-3.42	. 002 deep	. 05 deep	Not available
			. 060 long	1.52 long	
200	.135-. 204	3.43-5.20	. 002 deep	. 05 deep	
			. 180 long	4.57 long	
300	.205-.268	5.21-6.81	. 002 deep	. 05 deep	
			. 180 long	4.57 long	

Table 28: Maximum Amount of Acceptable Foreign Material

MISMATCH

"Mismatch is an inequality between one half of the O-ring and the other half."

Mismatch is an inequality between the cross-sectional radius of one half of the 0-ring and the radius of the other half (see Fiqure 65). Mismatch is caused by dimensional differences in the mold halves. (For maximum acceptable mismatch, see Table 29.)

MISMATCH

Figure 65: Unequal radii

AS568A	O-Ring Width	Military (per MIL-STD 413C)	Industrial (per RMA)			
Series	Inches	Millimeters	Inches	Millimeters	Inches	Millimeters
0	$<.100$	<2.54	.003	.076	.003	.076
100	$.100-.134$	$2.54-3.42$.004	.102	.004	.102
200	$.135-.204$	$3.43-5.20$.005	.127	.005	.127
300	$.205-.268$	$5.21-6.81$.006	.152	.006	.152
400	$.269-.281$	$6.82-7.14$.006	.152	.006	.152

Table 29: Maximum Amount of Acceptable Mismatch

MOLD DEPOSIT INDENTATIONS

"Mold deposit indentations are irregularly-shaped depressions with
a rough texture."

Mold deposit indentations are irregularly-shaped depressions with a rough texture found on the seal's surface (see Figure 66). Mold deposit indentations are caused by an accumulation of hardened deposits on the inner surface of the mold cavity. (For maximum acceptable mold deposit indentation, see Table 30.)

MOLD DEPOSIT INDENTATIONS

Figure 66: Visible on the Seal's Surface

AS568A	O-Ring Width		Military (per MIL-STD 413C)		Industrial (per RMA)	
Series	Inches	Millimeters	Inches	Millimeters	Inches	Millimeters
0	<. 100	<2.54	.010 wide .003 deep	.254 wide .076 deep	.015 wide .003 deep	.381 wide .076 deep
100	.100-. 134	2.54-3.42	.015 wide .003 deep	.381 wide .076 deep	.020 wide .003 deep	.508 wide .076 deep
200	.135-. 204	3.43-5.20	.020 wide .004 deep	.508 wide .102 deep	.025 wide .004 deep	.635 wide .102 deep
300	.205-. 268	5.21-6.81	.025 wide .004 deep	.635 wide .102 deep	.030 wide .005 deep	.762 wide .127 deep
200	.269-. 281	6.82-7.14	.030 wide .005 deep	.762 wide .127 deep	.040 wide . 006 deep	1.016 wide .152 deep

Table 30: Maximum Amount of Acceptable Mismatch

NON-FILL

"Non-fill is a random and irregular surface indentation."

Non-fill is a random and irregular surface indentation with a coarser texture than the unaffected portions of the O-ring surface (see Figure 67). Non-fill results from imperfect flow of the seal material within the mold, and/or incomplete filling of the mold, and/or air trapped in the mold. (For maximum acceptable non-fill, see Table 31.)

Figure 67: Random Surface Indentations

AS568A	O-Ring Width		Military (per MIL-STD 413C)		Industrial	(per RMA)
Series	Inches	Millimeters	Inches	Millimeters	Inches	Millimeters
0	<. 100	<2.54	None	None	None	None
100	.100-. 134	2.54-3.42	.010 wide .002 deep	.254 wide .051 deep	.030 wide .003 deep	.762 wide .076 deep
200	.135-. 204	3.43-5.20	.015 wide 003 deep	.381 wide .076 deep	.030 wide .004 deep	.762 wide .102 deep
300	. $205-.268$	5.21-6.81	.025 wide .003 deep	.635 wide .076 deep	.040 wide .004 deep	1.016 wide .102 deep
200	. $269-.281$	6.82-7.14	.040 wide .003 deep	1.016 wide .076 deep	.050 wide .004 deep	1.270 wide .102 deep

Table 31: Maximum Amount of Acceptable Non-fill

OFF-REGISTER

"Off-register results in an obvious misalignment of the O-ring "halves."

Off-register results in an obvious misalignment of the 0-ring "halves" (see Figure 68). Off-register results from a lateral shift of one of the mold cavity plates in relation to its mating plate. (For maximum acceptable off-register, see Table 32.)

OFF-REGISTER

Figure 68: Misaligned "halves"

AS568A	O-Ring Width	Military (per MIL-STD 413C)	Industrial (per RMA)			
Series	Inches	Millimeters	Inches	Millimeters	Inches	Millimeters
0	$<.100$	<2.54	.003	.076	.003	.076
100	$.100-.134$	$2.54-3.42$.004	.102	.004	.102
200	$.135-.204$	$3.43-5.20$.005	.127	.005	.127
300	$.205-.268$	$5.21-6.81$.006	.152	.006	.152
200	$.269-.281$	$6.82-7.14$.006	.152	.006	.152

Table 32 : Maximum Amount of Acceptable Off-Register

PARTING LINE INDENTATIONS

"Parting line indentations are shallow recesses found at the seal's parting line."

Parting line indentations are shallow recesses (typically shaped like a saucer, though sometimes triangular) found at the seal's parting line on the O.D. and/or I.D. (see Figure 69). The parting line usually divides the indentation in half. Parting line indentations are the result of a deformity in the edge of the mold at the parting line. (For maximum acceptable parting line indentation, see Table 33.)

parting line indentations

Figure 69: Found on the OD and/or ID

AS568A	O-Ring Width		Military (per MIL-STD 413C)		Industria	per RMA)
Series	Inches	Millimeters	Inches	Millimeters	Inches	Millimeters
0	<. 100	<2.54	010 wide 003 deep	.254 wide .076 deep	.015 wide . 003 deep	.381 wide . 076 deep
100	.100-. 134	2.54-3.42	.015 wide .003 deep	.381 wide .076 deep	.020 wide . 003 deep	.508 wide .076 deep
200	.135-204	$3.43-5.20$.020 wide .004 deep	.508 wide .102 deep	.025 wide . 004 deep	.635 wide .102 deep
300	.205-. 268	5.21-6.81	.025 wide 005 deep	.635 wide .127 deep	.030 wide .005 deep	.762 wide .127 deep
200	. $269-.281$	6.82-7.14	.030 wide .006 deep	.762 wide .152 deep	.040 wide .006 deep	1.016 wide .152 deep

Table 33: Maximum Amount of Acceptable Parting Line Indentation

PARTING LINE PROJECTION

"Parting line projection is a continuous ridge of material found at the seal's parting line."

Parting line projection is a continuous ridge of material found at the seal's parting line on the O.D. and/or I.D. (see Figure 70). Excessive flash is a thin, film-like formation extending beyond the parting line projection. Parting line projection can result when mold wear results in enlarged corner radii. Excessive flash can result from separation of the mold plates or improper (inadequate) trimming of the seal following removal from its mold cavity. (For maximum acceptable parting line projection, see Table 34.)

PARTING LINE PROJECTION

Figure 70: Found on the OD and/or ID

AS568A	O-Ring Width	Military (per MIL-STD 413C)	Industrial (per RMA)			
Series	Inches	Millimeters	Inches	Millimeters	Inches	Millimeters
0	$<.100$	<2.54	.003	.076	.003	.076
100	$.100-.134$	$2.54-3.42$.003	.076	.004	.102
200	$.135-.204$	$3.43-5.20$.004	.102	.005	.127
300	$.205-.268$	$5.21-6.81$.005	.127	.006	.152
400	$.269-.281$	$6.82-7.14$.006	.152	.007	.178

Table 34 Maximum Amount of Acceptable Parting Line Projection: Maximum Amount of Acceptable Parting Line Projection

AGING \& SHELF LIFE

"Detrimental effects can be minimized by proper storage conditions."

As they age, 0-rings and other rubber products can undergo changes in physical properties. They may even become unusable due to excessive hardening, softening, cracking, crazing, or other surface degradations. These changes may be the result of a single factor or a combination of factors, such as the action of oxygen, ozone, light, heat, humidity, oils, water, or other solvents. Detrimental effects can be minimized however, by proper storage conditions. (Our warehouse can be seen in Figure 71.)

TEMPERATURE

The optimum storage temperature is between $4^{\circ} \mathrm{C}$ and $26^{\circ} \mathrm{C}$. High temperatures accelerate the deterioration of rubber products. Heat sources should be arranged so that the temperature of stored items never exceeds $50^{\circ} \mathrm{C}$. Low temperature effects are neither as damaging nor as permanent, but rubber articles will stiffen. Care should be taken to avoid distorting them at temperatures below $0^{\circ} \mathrm{C}$.

HUMIDITY

Expressed as a percentage, relative humidity is the ratio of the amount of water vapor present in the air to the greatest amount that could be present at a given temperature. Ideally, the relative humidity in the storage area should be below 75%. Very moist or very dry conditions must be avoided. Where ventilation is necessary, keep it to a minimum. Condensation cannot be allowed to occur. Some materials, such as polyesterbased polyurethanes, are hygroscopic (they absorb moisture from the air). This moisture attacks the polymer's chemical backbone, resulting in chain scission (division of the polymer chain into smaller, weaker segments). Over time, the material becomes soft and cheesy. In humid environments, this can occur in a matter of weeks unless precautions are taken

LIGHT

O-rings and other rubber products should always be protected from light, especially natural sunlight. Strong artificial light with a high ultraviolet (UV) content is also dangerous. Regardless of the source, UV rays can cause chain scission. Use of polyethylene bags stored inside large cardboard containers is recommended. Alternatively, polyethylene-lined craft bags also offer good protection.

Figure 71: Our warehouse. Proper storage conditions prolong the lives of molded products.

AGING \& SHELF LIFE

OXYGEN \& OZONE

Oxygen (02) and ozone (03) are very damaging to rubber products. Whenever possible, 0 -rings and other molded articles should be stored in hermetic (airtight) containers to protect them from circulating air. Oxygen (especially in combination with heat) causes rubber articles to form additional cross-links, leading to unwanted hardening of the seal. As with water and UV light, ozone is capable of causing chain scission. Rubber products should be kept away from ozone generators such as electric motors, mercury vapor lamps, and high voltage electrical equipment.

DEFORMATION

Rubber products should be stored in a relaxed condition, free from tension, compression, or other deformation which can lead to cracking or permanent shape change. Large 0 -rings and seals should not be stored on pegs.

SHELF LIFE

In normal warehouse conditions, the shelf life of even relatively age-sensitive elastomers is considerable. This is largely due to advances in compounding. Table 35 lists some of the generally recommended limitations of many compounds. Taken from Military Handbook 695, this table is quite conservative.

STORAGING AND CODING

All O-rings inventoried and shipped by NewDealSeals are stored in either zip lock or heat-sealed plastic bags. These bags feature bar-coded labels indicating both the contents' cure date and batch number.

Type	ASTM Designations(s)	Shelf Life
Nitrile (Buna N)	NBR	3 to 5 years
Styrene Butadiene (Buna S)	SBR	3 to 5 years
Polybutadiene	BR	3 to 5 years
Polyisoprene	NR, IR	3 to 5 years
Hypalon®	CSM	5 to 10 years
Ethylene Propylene	EPDM, EPM	5 to 10 years
Neoprene®	CR	5 to 10 years
Polyurethane (polyether)	EU	5 to 10 years
Epichlorohydrin	CO, ECO	5 to 10 years
Fluorocarbon (Viton®)	FKM	up to 20 years
Perfluoroelastomer	FFKM	up to 20 years
Silicone	Q to 20 years	
Fluorosilicone	up to 20 years	
Polyacrylate	up to 20 years	
Polysulfide	TVM, ANM	up to 20 years

Table 35: Shelf Life of Common Elastomers

NOTES
\longrightarrow

167

DIMENSIONS

```
"The dimensions of the O-ring itself always play a huge role in the
    success or failure of a seal."
```

Having selected the most appropriate material for your O-ring seal, now is the time to consider a number of other factors that will undoubtedly impact your application. The dimensions of the O-ring itself always play a huge role in the success or failure of a seal. there are three main O-ring dimensions to consider: its initial size, the amount of stretch it undergoes, and the amount of squeeze necessary to complete the seal.

SIZE

O-ring size is typically specified according to AS 568A, the Aerospace Standard Uniform Dash Numbering System developed by the Society of Automotive Engineers (SAE). Per AS 568A, the size of each 0 -ring can be noted in terms of its inside diameter (I.D.) and width (W). (Width is also referred to as cross-section, or CS.) Each figure also includes a tolerance, or allowable deviation (plus and minus). Measurements are often given in both inches and millimeters.
Size listings may include two sets of figures: actual size and nominal size. The actual size is the exact size of the 0-ring in decimal dimensions (inches or millimeters), including tolerances. The nominal size is the approximate size of the O-ring in fractional dimensions (inches, e.g. $11 / 8^{\prime \prime}$) and is generally included strictly for reference purposes. In addition to the inside diameter and width figures, a nominal listing may also include an outside diameter (O.D.) listing. Keep in mind that the width of an O-ring is one-half the difference between its O.D. and I.D. (see Figure 72).
The O-ring size that is best suited for a particular project depends on the needs of the seal. Keep in mind that cross-section determines sealability. Larger cross-sections typically provide more stability and allow more tolerance, but they also create more seal friction. Smaller sections generate less friction but are less stable and allow less tolerance. Regardless of the application, it is imperative that the cross-section be greater than the height of the gland into which it will be installed. Squeeze applied to the seal will compress the 0 -ring. The combination of compression and system pressure will cause the 0 -ring to block the diametral clearance gap and prevent leakage. The effects of variances in cross-section size are shown in Table 36.

Figure 72: 0-ring Dimensions

LARGER CROSS-SECTIONS	SMALLER CROSS-SECTIONS
Reciprocating Seals	
Increased friction	Decreased friction
Increased stability	Decreased stability
All Seals	
Less compression set*	More compression set*
(*esp. in fluorocarbons and nitriles; not in silicones and ethylene propylenes)	
Less swell in fluid	More swell in fluid
Less resistant to explosive decompression	More resistant to explosive decompression
Allows larger tolerances	Requires smaller tolerances
Less susceptible to dirt and damage	More susceptible to dirt and damage
Decreased physical properties**	Increased physical properties**
(**elongation in fluorocarbons; tensile and elongation in nitriles)	
Requires larger (heavier) design	Allows smaller (lighter) design

Table 36: Effects of Variances in Cross-Section Size

DIMENSIONS

STRETCH

Measured as a percentage increase in the I.D. of an O-ring, stretch results in a reduction and flattening of the seal's cross-section (width). There are two "types" or "phases" of stretch: installation stretch (as the seal is being placed in the groove) and assembled stretch (once the seal is seated). Because installation stretch is temporary (or even momentary), an O-ring can generally undergo a high degree of it, sometimes as much as 100% or more if the installation is particularly tricky. An O-ring may have to be stretched in unusual ways or at odd angles in order to safely navigate an intricate design.
Assembled stretch, on the other hand, is permanent and must therefore be minimized if the seal itself is to have a long life. But though it should be kept to a minimum, assembled stretch should not be eliminated altogether. A small degree of assembled stretch ensures the seal will fit snugly against the piston (or rod) and not sag and buckle in the groove. Assembled stretch is possible when the I.D. of an 0-ring is slightly smaller than the groove diameter. This difference between the diameters ensures the 0 -ring will be subjected to some degree of stretch during both installation and use. For most situations, assembled stretch should be at least 1% but not more than 5\%. Care must be taken to avoid an assembled stretch greater than 5% so as not to exacerbate stresses and reduce the seal's overall life expectancy. This is especially true when using a nitrile compound. Fluorocarbons, polyurethanes, chloroprene, and ethylene propylene typically last longer under a higher degree of assembled stretch. Keep in mind that higher amounts of assembled stretch may need to be compensated for by use of a smaller gland, especially if the stretch exceeds 2% or 3%. Reducing the gland depth helps maintain the required amount of squeeze on the 0-ring's reduced and flattened cross-section (see Table 37).

Table 37: Reduction of Cross-Section Due to Stretch

DIMENSIONS

SQUEEZE

Expressed as both a decimal measurement (in inches and/or millimeters) and as a percentage of the original 0 -ring cross-section (width), squeeze is compression of the 0 -ring's cross-section between mating surfaces. For example, an 0-ring with an original cross-section of . $040^{\prime \prime}(1.02 \mathrm{~mm})$ that is squeezed $.007^{\prime \prime}(.18 \mathrm{~mm})$ has been compressed approximately 16%. Likewise, a $.275^{\prime \prime}(7 \mathrm{~mm})$ 0-ring that is squeezed $.035^{\prime \prime}(.89 \mathrm{~mm})$ has been compressed approximately 13\%.
There are two main types of squeeze for static 0-ring seals: radial and axial. Radial compression occurs on an O-ring's O.D. and I.D., as with cap and plug type configurations (see Figure 73). Axial compression occurs on the top and bottom surfaces of the O-ring, as with face (flange) type designs (see Figure 74).
Because of the nature of their installation and movement, dynamic seals (either reciprocating, rotary, or oscillating) almost always employ only radial squeeze, though there might be rare instances (as with a face seal involving rotary motion) in which axial squeeze is used
Squeeze depends on three variables: the amount of compressive force applied to a seal (as measured in pounds per linear inch, or pli), the hardness of the seal (its resistance to compression, as typified by a durometer reading), and the cross-section of the seal As previously noted, the cross-section is reduced and flattened when the 0-ring is stretched. A seal under a high degree of stretch will typically require a greater amount of squeeze (or, alternatively, a gland with less depth) in order to maintain the proper amount of contact between the seal and the mating surface
As might be guessed, the proper amount of 0-ring squeeze differs from application to application. Most static seals should never be squeezed more than 30%. Because of friction and wear considerations, the maximum recommended squeeze for most dynamic seals is only 16%. These percentages may vary, however, depending on factors such as the size of the O-ring and the temperatures to which the seal will be exposed. For example, a smaller O-ring or an O-ring that won't have to withstand higher temperatures can function effectively under greater squeeze. The necessary amount of O-ring squeeze can also fluctuate within a given application if O-rings made of differing compounds (with varying hardnesses) or having different inside diameters are used interchangeably. No matter what the size or amount of stretch, all 0-rings must be squeezed at least 0.18 mm before the adequacy of the seal can be accurately determined
Keep in mind that the amount of squeeze being employed affects a seal's susceptibility to gas permeation. As squeeze increases, permeability decreases. This is true for a couple of reasons. First, more squeeze translates to less groove depth, meaning less area available for gas to enter initially. Second, an O-ring under increased squeeze is wider, meaning gas must travel further (i.e. through a greater length of material) before reaching the low pressure side to escape.

RADIAL SQUEEZE

Figure 73: Applied to ID and OD

AXIAL SQUEEZE

Figure 74: Applied to Top and Bottom

ENVIRONMENT

E N VIRONMENT

"The ability to withstand its environment is critical to a seal's

 success."Another important design consideration is the environment in which any seal must function. The ability to withstand its environment is critical to a seal's success. Environmental issues include temperature, pressure, the possible use of anti-extrusion devices, friction, and the need for lubrication

TEMPERATURE

Temperature extremes can lead to seal failure by changing an O-ring's size and consistency. Extreme heat can cause the seal to expand and harden, permanently deforming it. Very low temperatures may cause the shrinking seal to lose flexibility and become brittle. Knowing what range of temperatures a seal must withstand is essentia to the design process. In some cases, designing a larger gland for high-temperature seals or a smaller gland for low-temperature seals may help. Table 38 shows the typical temperature ranges for the most common sealing materials

Table 38: Comparison of Material Temperature Ranges

PRESSURE \& EXTRUSION

Pressure is a double-edged sword. In most O-ring sealing applications, a moderate amount of system pressure is desirable because it aids in effecting the seal. Since the rubbery 0-ring is essentially a highly viscous fluid, moderate pressure forces this thick material firmly against the mating surfaces, and a positive seal is created If an inadequate amount of squeeze is employed, or if the seal material has poor compressive modulus, low pressure (below 100 psi) may not be enough to help ensure adequate contact between the 0-ring and the mating surfaces. A leak path may remain and failure can result.
High pressure can be even more problematic. Pressure increases may expand the mating components, often enlarging the clearance gap between parts. The larger the gap, the greater the likelihood that part of the 0 -ring will be forced (extruded) into it. Extrusion becomes most likely as pressure approaches or exceeds 1,500 psi. Constant high pressure will cause the surface of the extruded seal to rupture. Even if pressure occasionally drops (as during cycling or system fluctuations), the extruded portion of the seal is still vulnerable. The O-ring's elastic memory enables it to regain its original shape, but it may not recede out of the retracting gap quickly enough. A small chunk of its material may be torn (nibbled) away. Both extrusion and nibbling ultimately create a leak path, and seal failure inevitably results (see Figures 75 and 76).
The amount of extrusion to be expected in a given application thus depends on three main factors: 1) the pressure imposed on the seal, 2) the amount of clearance between mating surfaces, and 3) the resistance of the seal material to deformation. The first two factors are not easy to adjust. The inherent needs of the application often dictate that system pressure cannot be lowered. Reducing the clearance gap is possible but can often be very expensive. Due to other variables (such as wear and misalignment of mating parts), a redesigned gap still may not adequately prevent extrusion. This leaves the third factor, resistance of the seal to deformation, as the most viable avenue for reducing extrusion concerns.
Hardness and Young's Modulus (modulus of elasticity, or stiffness) chiefly determine an O-ring's resistance to deformation. Materials with both high modulus and hardness tend to have fewer extrusion problems. Temperature-induced changes in modulus and stress relaxation behaviors (such as creep/cold flow) can, however, put even the most stalwart O-ring in danger. For more on extrusion, see also Diagnosing 0-Ring Failure: Extrusion \mathbb{C} Nibbling.

WATER MOLECULE

Figure 76: Failure

E N VIRONMENT

BACK-UP RINGS

Back-up rings are one way to protect the 0-ring and prevent extrusion in both static and dynamic applications. A back-up ring is a relatively hard, high shear modulus material placed in a seal groove between the O-ring and the clearance gap (i.e. on the seal's low-pressure side). The back-up acts as a support or buttress for the 0-ring even as it blocks the gap into which the pressurized seal might otherwise extrude. As an added bonus, the back-up ring also reduces friction and wear by trapping lubricant in the vicinity of the seal.
In some cases, 90-durometer 0-rings are used to resist extrusion. Be aware, however, that sealability often suffers even as friction and wear increase with use of such a hard material. A resilient 70-durometer nitrile seal with a 90-durometer or harder back-up ring is preferable. Bi-directional pressure will necessitate back-ups on both sides of the 0-ring. Use of two back-ups (even if pressure is acting from only one side) also eliminates the possibility of installing a single back-up on the wrong side of the 0-ring Performance differences for seals with and without a back-up ring are shown in Figure 77. As you can see, use of a back-up ring has clear advantages.

Table 39 is included here as a general quide to help you determine if back-ups are necessary in a given application. Using the fluid pressure in your system (scaled along the left of the graph in psi and along the right in MPa) and the diametral clearance of your design (scaled along the bottom in inches/millimeters), you can plot a point on the graph field. Using the line that corresponds to the durometer of your O-ring (e.g. 70 Shore A) as a reference point, you then note on which side of this durometer line the plotted point falls. If it falls to the left of the line, extrusion is not anticipated and no back-ups are necessary. If the point falls to the right, however, extrusion will likely be a problem and back-ups are recommended.

Without back-up ring

1000 PSI pressure

1500 PSI pressure

3000 PSI
pressure

With
back-up ring

Figure 77: The benefit of a Back-up

E N VIRONMENT

Table 39: Extrusion Curves

Though the information in Table 39 is useful, there are a number of things to keep in mind when consulting this data. First, these are general curves based on medium shear modulus hydrocarbons (such as nitrile and EPDM). Higher shear modulus materials (such as polyurethane) will offer increased extrusion resistance, thus shifting the curve upward (as indicated by the yellow shading).
For example, a 70-durometer polyurethane can withstand much higher pressures than a lower shear modulus 70-durometer nitrile. Also, these curves are not applicable for silicone, fluorosilicone, and other low shear modulus materials. Second, these curves assume a moderate system temperature ($70^{\circ} \mathrm{C}$). As temperature increases, the tendency of most elastomers is to soften and thus be more easily extruded. Third, these curves also assume that the total diametral gap is concentric. If eccentricity occurs (due to severe side-loading or misalignment), the gap on one side will become larger, making extrusion on that side more likely.
Again, it is always a good idea to use back-ups with O-rings (or other seals) in pressures exceeding 1,500 psi or in designs featuring large clearance gaps. The additional cost of back-ups is small in comparison with the cost of tighter machining tolerances, and back-ups easily pay for themselves by both improving seal performance and prolonging seal life.
NewDealSeals offers back-up rings in a wide array of materials, including contoured hard rubber (nitrile or fluorocarbon/Viton®), polyurethane, Hytrel®, PTFE (Teflon®), and engineering plastics. Polyurethane's inherent toughness, ability to withstand high pressure, and resistance to extrusion make it an excellent material for back-ups. Hytrel® is a thermoplastic elastomer combining toughness, resilience, and chemical resistance.
As shown in Figures 78 through 80, Teflon® back-up rings come in three basic types: solid (uncut), single turn (also known as scarf cut, or split), and multi-turn (spiral cut). In addition to PTFE, back-ups are also available in PEEK (another high performance plastic) and in nylon (an engineering plastic).

Figure 78: Solid (uncut)

Figure 79: Single turn (scarf cut or split)

Figure 80: Multi-turn (spiral cut)

E N V I R O N M E N T

FRICTION

Simply defined, friction is the resistance to motion that develops when two objects are in contact. Friction must be minimized in order to reduce 0 -ring wear and prolong seal life. There are two main types of friction to be considered: break-out friction and running friction.
Also known as static friction or stiction, break-out friction is the static frictional force which must be overcome to initiate movement either at startup or after a period of inactivity. The amount or degree of break-out friction depends largely on how long the seal and the gland have been in contact. The longer the contact, the more of an opportunity the seal has had to flow into the gland s metallic micropores. A magnified view of what this interface between an O-ring and a mating surface might look like can be seen in Figure 81. A combination of rubber-to-metal adhesion and the shearing force generated by the micropore irregularities must then be overcome before movement can begin.
Running friction is the dynamic frictional force which must be overcome to maintain movement. Running friction is perhaps most problematic when soft metals (such as aluminum, copper, or brass) are in use. Other factors that affect both break-out and running friction include the hardness of the 0 -ring, the gland's surface finish, the amount of O-ring squeeze, the fluid temperature and pressure, and the amount and type of lubrication.

Table 81: Interface Between 0-Ring and Mating Surface

E N V IRONMENT

EXTERNAL LUBRICATION

One other environmental element that must always be addressed is the need for proper lubrication. As simple as it sounds, this really cannot be stressed enough. In almost any type of O-ring application, use of a proper lubricant - one that is chemically compatible with the seal, all system fluids, and all mating surfaces - is instrumental. This is true during both installation of the 0 -ring and its subsequent operation as a seal. During installation, presence of a lubricant (such as oil or grease) simply helps ease
 damaging the seal are also minimized. If you don't have to wrestle the 0-ring into place you're less likely to accidentally nick or cut the seal's surface. Lubrication helps seat static seals, and automated assembly would be impossible without the aid of some form of lubrication. But which form is best?
There are a variety of options. You can coat the outside of the O-ring with bakedon PTFE; this makes the seal super-slick. Or you can apply graphite, or even some molybdenum disulfide (MoS2). But while such external treatments definitely help during installation, they don't last much beyond that point. "Moly" coatings rub off, and the baked-on PTFE soon flakes away.
Liquid lubricants are still another possibility. Applied as a thin film on the surface of a rubber or plastic part, it stays wet just long enough to allow the part to be installed. But once the seal is successfully installed and the gland assembled, operational concerns take over. Break-out (startup) and running (dynamic) friction become the main concerns, especially in pneumatic equipment, plumbing devices, hydraulic valves and cylinders, or any application requiring manual operation. As during installation, surface treatments can help.
The most permanent surface treatment is chlorination, in which the 0-ring elastomer (typically nitrile) is subjected to concentrated amounts of chlorine gas. This gas chemically attacks the seal's surface, simultaneously making it both harder (by a few durometer points) and more slippery. Beneath the surface, the O-ring remains soft and resilient.
As a side effect of chlorination, the O-ring surface also develops numerous minute cracks. Because they are very small, however, these cracks will not impair the 0-ring's sealability. These tiny cracks are actually advantageous in that they can act as reservoirs for secondary external lubricants, such as oils and greases. While chlorination is particularly helpful in reducing running friction, the additional step of treating the seal's surface with oil or grease also facilitates installation and helps reduce break-out friction (otherwise known as static friction, or stiction). In addition, lubricants help protect the seal from oxygen and ozone damage. In vacuum applications, lubrication helps reduce the leak rate by filling in metal surface defects and 0-ring micropores.

COMMON EXTERNAL LUBRICANTS

1. HYDOCARBON-BASED MATERIALS, such as petrolatum. As a clear to yellowish semisolid, petrolatum is better known as petroleum jelly (Vaseline®), but it is also available in liquid form. Petrolatum is typically suitable for use with nitrile (in hydraulic oils and fuels), chloroprene (in hydraulic oils and Freon®), polyurethane (in oils and fuels), silicone (general usage), fluorosilicone (in oils and fuels), and fluorocarbon (in hydraulic applications)
2. SILICONE-BASED GREASES, such as Dow Corning DC-55, a general-purpose grease Dow Corning offers a wide variety of silicone-based lubricants for use in vacuum and pneumatic applications, including DC-976, which is specially formulated for high vacuum applications.
3. BARIUM-BASED GREASES, which are intended for high temperature applications and/ or applications requiring increased chemical compatibility. Barium greases are typically suitable for use with nitrile (in extreme conditions) and polyurethane (in heavy duty applications)
One o
4. OTHER FORMULATIONS, such as Celvacene® grease from Inland Vacuum Industries Celvacene contains no silicone and is available in light, medium, and heavy viscosities. Specifically engineered for use in high vacuum pump applications, Celvacene is typically suitable for use with nitrile, chloroprene, and butyl.

ENVIRONMENT

NTERNAL LUBRICATION

Friction can also be reduced through use of internal lubricants. Internally-lubricated compounds have a friction-reducing agent homogeneously dispersed directly into their chemical structure. This dispersion of the lubricant is made at the time the elastomeric compound is initially mixed. Though the added lubricant does alter the compound, the elastomer's basic properties remain largely unchanged. An internally-lubricated nitrile is still nitrile; it is simply a special formulation of nitrile designed to minimize friction. It may help you to think of internal lubrication as the end result of a planned
incompatibility. By design, the added friction-reducing agent will not be chemically compatible with the base elastomer. This means that the agent will separate itself out and "bloom" up onto the O-ring's surface, as illustrated in Figure 82. This continual blooming of the agent keeps the seal's exterior coated with lubricant, making the 0-ring slippery and less inclined to stick during startup.
It's also worth noting that lubrication can be either organic or inorganic. Widely used organic lubricants include amides (in both flake and pellet form), waxes, esters, powdered PTFE, and mineral oils. Inorganic agents include graphite (powdered and flake) and MoS2. Whether organic or inorganic, the lubricant in use must be compatible with system fluids to avoid leaching (removal) of the agent, which can lead to dangerous degrees of seal shrinkage. The lubricant must also be compatible with all adjacent surfaces to avoid structural damage, such as graphite pitting of stainless steel.
Table 40 shows the results of abrasion and friction tests conducted on hydrogenated nitrile (HNBR) containing a number of widely used organic and inorganic lubricants. As shown, internal lubrication using organic oleamides offers an outstanding blend of abrasion and friction properties. NewDealSeals is pleased to offer a series of internallylubricated compounds utilizing oleamides (as well as compounds featuring MoS2, graphite, waxes, and powdered PTFE). These compounds are available in a wide variety of products, including O-rings, U-cups, piston seals, and rod seals.
Once all the major environmental factors have been taken into consideration, due attention must still be paid to the actual physical space in which the 0-ring will reside. With that in mind, let's take a closer look at the importance of proper gland construction next.

IN BLOOM

Figure 82: "Blooming" of the Internal Lubricant

Table 40: Abrasion \& Friction Testing Results for Lubricated HNBR

CONSTRUCTION

CONSTRUCTION

"Any seal design project must give due attention to the space in which the O-ring will reside."

Any seal design project must give due attention to the space in which the 0-ring will reside, and here's where an important distinction should be made. Though sometimes used interchangeably when speaking of seal design, the terms "groove" and "gland" are not synonymous (see Figure 83). "Groove" refers specifically to the machined recess within a gland into which an O-ring is fitted. "Gland" is a more general term for the machined cavity which includes both the groove and the mating surface to be sealed. That said, choices as to the metal, surface finish, and shape of the gland and its groove must be made. It is also important to maintain cleanliness within the gland and not to damage the 0 -ring during installation or assembly.

METAL

The metal(s) in use must be hard enough to hold up under service conditions, especially in dynamic seals. Bronze, aluminum, brass, and other soft metals are not well suited for glandular use. Steel and cast iron are much better choices. Hard chrome plate, burnished, or honed surfaces are best. Though circumferential (crosswise) scratches on a cylinder or bore may not be problematic, surfaces must not have longitudinal (lengthwise) scratches.

Figure 83: A "groove" is machined recess within the "gland" cavity

SURFACE FINISH

More than a singular concept, surface finish is really a function of four distinct factors The most important factor is roughness, or the closely-spaced surface irregularities that result from manufacturing and/or cutting (as by tools or abrasive materials, see Figure 84). These irregularities are typically measured in microinches (millionths of an inch) or micrometers (millionths of a meter). To make a topographic analogy, roughness is akin to a plowed field where the churned dirt forms countless small pockets in the topsoil.
The second factor is lay, or the direction of the primary roughness pattern (again, see Figure 84). In other words, the way in which the surface irregularities are oriented. In terms of our analogy, lay would denote the particular pattern left in the dirt after it has been churned.
The third factor is waviness, or surface irregularities with considerably longer wavelengths than those referenced as roughness (see Figure 85). Waviness irregularities can be caused by, among other things, machinery vibrations or material warping. If roughness is analogous to a plowed field, waviness can be thought of as a slowly rolling hill.
Flaws are the fourth factor that should be considered. Flaws are surface imperfections that occur only infrequently, i.e. not in a pattern (see Figure 86). Flaws may be caused by inconsistencies within the metal itself, or through impact or abrasion after processing, as with scratches, cracks, etc. Depending on the severity, a single flaw may be enough to compromise the functionality of the surface. A flaw is like an isolated sinkhole or fissure in an otherwise unmarred plain.
The superimposition of these four factors onto one another determines the
characteristics of a given surface (see Figure 87). Roughness, lay, waviness, and flaws must all be measured to get a complete picture of the surface. The question then becomes: how best to reflect these measurements?

Figure 84: Roughness \& lay

Figure 86: Flaws

Figure 85: Waviness

Figure 87: All four factors

CONSTRUCTION

For many years, surface finish has been noted in terms of RMS, or Root Mean Square As a mathematical concept, RMS is the square root of the sum of the squares of the individual surface irregularity readings taken over a given sampling distance. More simply, RMS reflects the average depth of the irregularities a seal may encounter across a gland surface. That is, the higher the RMS number, the greater the depth of these irregularities and the greater the likelihood that they will impede or damage the seal. For example, break-out friction (also known as static friction or stiction) results when seal material flows into these tiny metallic irregularities during a period of no relative motion. The more time that the seal and the gland are in contact, the greater the
interface between them, and the greater the break-out friction. A time-lapse look at the seal's progressive flow into the irregularities can be seen in Figure 88. A combination of rubber-to-metal adhesion and the shearing force generated by the irregularities must be overcome before movement can begin. Smaller surface irregularities (as denoted by a lower RMS number) will allow for less interface with the seal material and thus decrease break-out friction, running friction, and wear.

Figure 90: Roughness Average

A word of caution is in order here, however: RMS measurements are good as far as they go, but be aware that they deal solely in depth, ignoring both shape and direction. It is entirely possible to have a number of different types of surface irregularities that would all result in the same RMS measurement but would affect seal material in vastly different ways. Some examples of this can be seen in Figure 89.
With this in mind, the optimal surface finish still depends on the application. Because they undergo no motion, most static seal surfaces need not be finished better than 0.8 $\mu \mathrm{m}$ RMS. Some projects (e.g. low-pressure applications) may allow for surfaces as rough as 1.6 or even $3.2 \mu \mathrm{~m}$ RMS. Due to increased friction and wear concerns, dynamic seals should have much smoother surfaces. Finishes of 0.2 to $0.4 \mu \mathrm{~m}$ RMS are common for dynamic seals. As you might expect, smoother surfaces take longer to machine (and are more expensive) than rougher surfaces.
Keep in mind that there is not a fixed relationship between RMS measurements. In other words, a surface finish of $2.0 \mu \mathrm{~m}$ is definitely rougher than a finish of $1.0 \mu \mathrm{~m}$, though not necessarily twice as rough. You should also be aware that, contrary to popular opinion, it is possible to have too much of a good thing; gland surfaces can be too smooth. The it is possible to have too much of a good tring; gland surfaces can be too smooth. The
surface irregularities that contribute to frictional build-up are the same irregularities that entrap lubricating fluids. A finish of less than $0.1 \mu \mathrm{~m}$ will essentially eliminate these metallic micropores, making the metal too smooth to hold on to lubrication. Friction will increase and the entire process will be for naught.
Experience has shown that traditional RMS measurements are not completely indicative of surface irregularities, so many manufacturers now use profilometers geared to generate "Ra" (roughness average) measurements. Ra is the sum of the absolute values of the peaks (above a median surface baseline) and the absolute values of the valleys (below this baseline) divided by the length of the sample (see Figure 90). For example, let's say the peaks have a total absolute value of $0.55 \mu \mathrm{~m}$; the valleys have a total absolute value of $0.65 \mu \mathrm{~m}$. The sum of these values $(1.2 \mu \mathrm{~m})$ divided by the sample length (we'll say 50 mm) yields an Ra value of $0.60 \mu \mathrm{~m}$. Since Ra measurements take into account both the peaks and the valleys in a given sample, many designers consider Ra results to be more indicative of surface irregularities than simple RMS figures.

CONSTRUCTION

SHAPE

The shape of the gland may be modified to suit the project's requirements, but typical rectangular grooves with straight sides help prevent 0 -ring extrusion and nibbling Provided the seal pressure will not exceed 1,500 psi, a five-degree slope may be added to the sides of the groove to facilitate the machining process. Radiusing (rounding off) the internal recesses and top corners of the groove will eliminate sharp edges and further reduce the chances of damaging the O-ring during installation of the seal, assembly of the gland, or actual service (see Figure 91).
Bear in mind that the 0-ring will likely undergo changes (such as swell) during the course of its service life. For this reason, the minimum volume of the groove should exceed the maximum expected volume of the 0-ring by at least 10%. This builds in a safety factor so the O-ring doesn't ever overfill the groove.

Figure 91: Surface Finish \& Shape Suggestions

CLEANLINESS

Because any foreign bodies within a gland can potentially damage the 0-ring or otherwise hamper the effectiveness of the seal it is extremely important that you clean each of the elements before attempting assembly. Metal shavings, stray fibers, wire, dirt, grit, sand, dust, or other particulate matter must be completely removed from the groove and all other surfaces within the gland before the 0-ring is installed. Use of a cleaning agent (which is, of course, chemically compatible with all of the seal elements) may prove helpful. Failure to thoroughly clean the seal environment prior to $0-r i n g$ installation can quickly negate all the time and energy put into design and construction.
The O-ring itself should also be free from any and all contaminants. The "better safe than sorry" rule applies here. You should always avoid using seals that have fallen on a dirty surface (such as the floor or a countertop) or been in contact with unclean articles (such as used shop rags or dusty storage bins). In addition, the system fluid(s) should be filtered prior to use if you suspect any possible contamination. Continuous careful monitoring of the seal and all aspects of its environment will pay dividends by preventing unexpected shutdowns and costly delays.
Cleanliness is perhaps most important when using a seal material (such as silicone or Teflon®) that has inherently poor tear resistance. An undetected piece of metal or wire can nick or cut the 0-ring surface during installation. For materials lacking in tear resistance, relatively minor surface damage can quickly become a major tear during service.

SEAL "SKIVING"

Figure 92: Installation Damage

CONSTRUCTION

\longrightarrow

O-RING INSTALLATION \& GLAND ASSEMBLY

Even if the edges of the groove have been radiused and the gland thoroughly cleaned other dangers still exist. The 0-ring may have to move across threads, slots, burrs, or other hazards while being installed. In such cases you should place a sleeve, piece of tape, or other buffer between the O-ring and the abrasive surface(s). Beveled-edge chamfers built into the gland design can also assist O-ring placement.
If installation tools are used, care must be taken to avoid damaging the 0-ring and prematurely dooming the seal. As a rule, hard and/or sharp instruments should not be used, as they are much more likely to nick or puncture the seal. A common type of damage is "skiving," or slicing of a seal's surface (see Figure 92). This can be done by either tools or gland edges and may not become apparent until operation begins. (For more on installation damage, see Diagnosing O-Ring Failure: Installation Damage.) Don't forget that lubrication is also an essential installation "tool." Lubrication may be added separately or built into the seal, either as an external treatment or an internal lubricant. Any lubrication must be compatible with all other seal elements.
As a general rule, the O-ring's I.D. should not be stretched more than 100% during installation. If smaller seals require more than 100% stretch, they should be allowed time to regain their normal size before the gland is shut. Twisting or folding the 0-ring may also contribute to spiral failure and should be kept to a minimum. Recall that final resting (service) I.D. stretch should not exceed 5\% so as not to compromise the seal's longevity. The gland itself should be closed with a simple longitudinal motion, without any unnecessary oscillation or rotation that could roll or pinch the seal. You must also exercise due caution during post-use 0 -ring extraction if the seal is to be reused.

STATIC SEALS

STATIC SEALS

"Static seals exist where there is no relative motion between the mating surfaces being sealed.

After considering the factors that generally affect all O-ring seals, you must also think about your specific type of application. O-ring seals fall into two main application categories: static and dynamic. Static seals exist where there is no relative motion between the mating surfaces being sealed. Both static and dynamic seals engender their own unique concerns. Relatively-speaking, however, static seals are easier to design because they can handle wider tolerances, rougher surface finishes, and higher pressure limits. There are four major types of static seals:

STATIC RADIAL SEALS

Static radial seals are formed when squeeze (compression) is applied to the inside diameter (I.D.) and outside diameter (O.D.) of the O-ring. Cap and plug type configurations commonly utilize radial seals. An example of a static radial 0-ring seal for a male gland is shown in Figure 93. A static radial O-ring seal for a female gland is shown in Figure 94. Gland design measurements for static radial 0-ring seals can be found in Table 41. Gland dimensions can be found in Table 42.

Figure 93: Static radial seal, male gland

Figure 94: Static radial, female gland

STATIC AXIAL (FACE) SEALS

Static axial seals (also known as face seals) are formed when squeeze is applied to the top and bottom surfaces of the O-ring. Axial seals are most often used in face (flange) type designs where an O-ring seats against the groove's low-pressure side. A static axial 0-ring seal (internal pressure) is shown in Figure 95. A static axial O-ring seal (external pressure) is shown in Figure 96. Gland design measurements for static axial 0 -ring seals can be found in Table 43. Gland dimensions can be found in Table 44.

Figure 95: Static axial seal, internal pressure

Figure 96: Static axial seal, external pressure

STATIC SEALS

STATIC SEALS WITH "DOVETAIL" GROOVES

Dovetails are face type designs that have been customized to form static seals by structurally immobilizing the O-ring within the gland. Dovetails are more expensive and difficult to design and install than the other types of static seals. A dovetail seal is shown in Figure 97. Gland design measurements for dovetail grooves can be found in Table 45.

STATIC CRUSH SEALS

Static crush seals use a male cover with a machined 45° angle to "crush" an O-ring into the corner of a triangular gland. Because the resulting distortion to the O-ring is permanent, it cannot be reused later. An example of a static crush seal is shown in Figure 98. Gland design measurements for crush seals can be found in Table 46.

STRAIGHT THREAD TUBE FITTING SEALS

Another static seal application is the straight thread tube fitting seal. We will not go into the subject in detail here because this particular type is not as common a configuration as the above mentioned seals. Boss dimensions for industrial straight thread tube fitting seals can be found in Table 47.

Figure 97: Dovetail Seal

[^2]NOTES
\longrightarrow

188

STATIC SEALS

Figure 99: Male gland

Figure 100: Female gland

Figure 101: Surface Finish \& Shape Suggestions

	H				I	G			R	
SIZE	CROSS SECTION	GLAND DEPTH	SQUEEZE		EXTRUSION	GROOVE WIDTH			GROOVE RADIUS	CONCENTRICITY*
			ACTUAL	\%	MAX	NO BACK_UPS MIN-MAX	1 BACK_UP MIN-MAX	$\begin{aligned} & 2 \text { BACK_UPS } \\ & \text { MIN-MAX } \end{aligned}$	MIN-MAX	
-004 thru -050	1.78 ± 0.08	1.27-1.32	0.38-0.58	22-32	0.13	2.36-2.49	3.51-3.63	5.21-5.33	$0.13-0.38$	0.38
-102 thru -178	2.62 ± 0.08	2.06-2.11	0.43-0.64	17-24	0.13	3.56-3.68	4.34-4.47	6.05-6.17	0.13-0.38	0.38
-102 thru -284	3.53 ± 0.10	2.82-2.87	0.56-0.81	16-23	0.15	4.75-4.88	5.28-5.41	6.99-7.11	0.25-0.64	0.64
-309 thru -395	5.33 ± 0.13	4.32-4.39	0.81-1.14	15-21	0.15	7.14-7.26	7.90-8.03	10.41-10.54	0.51-0.89	0.89
-425 thru -475	6.99 ± 0.15	5.74-5.82	1.02-1.40	15-20	0.18	9.53-9.65	10.36-10.49	13.67-13.79	0.51-0.89	0.89

Figure 103: Female gland

	O-RING DIMENSIONS					MALE GLAND						FEMALE GLAND						GROOVE G*	
SIZE	ID	TOL	W	TOL	$\begin{aligned} & \text { MEAN } \\ & \text { OD } \\ & \text { (REF) } \end{aligned}$	(B	RE)	(P	UG)	(GRO	OVE)		BE)		OAT)	(GR	VE)		
		(\pm)		(\pm)		DIA	$\begin{aligned} & \text { TOL } \\ & -.00 \end{aligned}$	DIA	$\begin{array}{r} \mathrm{TOL} \\ +.00 \end{array}$	DIA	$\begin{array}{r} \mathrm{TOL} \\ +.00 \\ \hline \end{array}$	DIA	$\begin{gathered} \text { TOL } \\ +.00 \end{gathered}$	DIA	$\begin{array}{r} \text { TOL } \\ -.00 \end{array}$	DIA	TOL -. 00	WIDTH	$\begin{gathered} \text { TOL } \\ -.00 \\ \hline \end{gathered}$
-1	0.74	± 0.10	1.02	± 0.08	2.77	2.67	+0.05	2.62	-0.03	1.12	-0.05	1.02	-0.05	1.07	+0.03	2.57	+0.05	1.40	+0.13
-2	1.07	± 0.10	1.27	± 0.08	3.61	3.51	+0.05	3.45	-0.03	1.50	-0.05	1.35	-0.05	1.40	+0.03	3.35	+0.05	1.78	+0.13
-3	1.42	± 0.10	1.52	± 0.08	4.47	4.37	+0.05	4.32	-0.03	1.96	-0.05	1.70	-0.05	1.75	+0.03	4.11	+0.05	2.11	+0.13
-4	1.78	± 0.10	1.78	± 0.08	5.33	5.23	+0.05	5.18	-0.03	2.69	-0.05	2.06	-0.05	2.11	+0.03	4.60	+0.05	2.36	+0.13
-5	2.57	± 0.13	1.78	± 0.08	6.12	6.02	+0.05	5.97	-0.03	3.48	-0.05	2.84	-0.05	2.90	+0.03	5.38	+0.05	2.36	+0.13
-6	2.90	± 0.13	1.78	± 0.08	6.45	6.35	+0.05	6.30	-0.03	3.81	-0.05	3.18	-0.05	3.23	+0.03	5.72	+0.05	2.36	+0.13
-7	3.68	± 0.13	1.78	± 0.08	7.24	7.14	+0.05	7.09	-0.03	4.60	-0.05	3.96	-0.05	4.01	+0.03	6.50	+0.05	2.36	+0.13
-8	4.47	± 0.13	1.78	± 0.08	8.03	7.92	+0.05	7.87	-0.03	5.38	-0.05	4.75	-0.05	4.80	+0.03	7.29	+0.05	2.36	+0.13
-9	5.28	± 0.13	1.78	± 0.08	8.84	8.71	$+0.05$	8.66	-0.03	6.17	-0.05	5.54	-0.05	5.59	+0.03	8.08	+0.05	2.36	$+0.13$
-10	6.07	± 0.13	1.78	± 0.08	9.63	9.53	+0.05	9.47	-0.03	6.99	-0.05	6.35	-0.05	6.40	+0.03	8.89	+0.05	2.36	+0.13

Figure 102: Male gland

Figure 103: Female gland

STATIC SEALS

	O-RING DIMENSIONS					MALE GLAND						FEMALE GLAND						GROOVE G*	
SIZE	ID	TOL	W	TOL	$\begin{gathered} \text { MEAN } \\ \text { OD } \\ \text { (REF) } \end{gathered}$	(B	E)	(PL	G)	$\begin{array}{r} \text { } \\ \text { (GRO } \end{array}$	JVE)	(T	E)	(THF	AT)	(GRC	VE)		
		(\pm)		(\pm)		DIA	$\begin{aligned} & \mathrm{TOL} \\ & -.00 \end{aligned}$	DIA	$\begin{array}{r} \text { TOL } \\ +.00 \end{array}$	DIA	$\begin{array}{r} \text { TOL } \\ +.00 \end{array}$	DIA	$\begin{gathered} \mathrm{TOL} \\ +.00 \end{gathered}$	DIA	$\begin{aligned} & \text { TOL } \\ & -.00 \end{aligned}$	DIA	$\begin{aligned} & \text { TOL } \\ & -.00 \end{aligned}$	WIDTH	$\begin{gathered} \text { TOL } \\ -.00 \end{gathered}$
-20	21.95	± 0.23	1.78	± 0.08	25.50	25.40	+0.05	25.35	-0.03	22.86	-0.05	22.23	-0.05	22.28	+0.03	24.77	+0.05	2.36	+0.13
-21	23.52	± 0.23	1.78	± 0.08	27.08	26.97	+0.05	26.92	-0.03	24.43	-0.05	23.80	-0.05	23.85	+0.03	26.34	+0.05	2.36	+0.13
-22	25.12	± 0.25	1.78	± 0.08	28.68	28.58	+0.05	28.52	-0.03	26.04	-0.05	25.40	-0.05	25.45	+0.03	27.94	+0.05	2.36	+0.13
-23	26.70	± 0.25	1.78	± 0.08	30.25	30.15	+0.05	30.10	-0.03	27.61	-0.05	26.97	-0.05	27.03	+0.03	29.51	+0.05	2.36	+0.13
-24	28.30	± 0.25	1.78	± 0.08	31.85	31.75	+0.05	31.70	-0.03	29.21	-0.05	28.58	-0.05	28.63	+0.03	31.12	+0.05	2.36	+0.13
-25	29.87	± 0.28	1.78	± 0.08	33.43	33.32	+0.05	33.27	-0.03	30.78	-0.05	30.15	-0.05	30.20	+0.03	32.69	+0.05	2.36	+0.13
-26	31.47	± 0.28	1.78	± 0.08	35.03	34.93	+0.05	34.87	-0.03	32.39	-0.05	31.75	-0.05	31.80	+0.03	34.29	+0.05	2.36	+0.13
-27	33.05	± 0.28	1.78	± 0.08	36.60	36.50	+0.05	36.45	-0.03	33.96	-0.05	33.32	-0.05	33.38	+0.03	35.86	+0.05	2.36	+0.13
-28	34.65	± 0.33	1.78	± 0.08	38.20	38.10	+0.05	38.05	-0.03	35.56	-0.05	34.93	-0.05	34.98	+0.03	37.47	+0.05	2.36	+0.13
-29	37.82	± 0.33	1.78	± 0.08	41.38	41.28	+0.05	41.22	-0.03	38.74	-0.05	38.10	-0.05	38.15	+0.03	40.64	+0.05	2.36	+0.13
-30	41.00	± 0.33	1.78	± 0.08	44.55	44.45	+0.05	44.40	-0.03	41.91	-0.05	41.28	-0.05	41.33	+0.03	43.82	+0.05	2.36	+0.13
-31	44.17	± 0.38	1.78	± 0.08	47.73	47.63	+0.05	47.57	-0.03	45.09	-0.05	44.45	-0.05	44.50	+0.03	46.99	+0.05	2.36	+0.13
-32	47.35	± 0.38	1.78	± 0.08	50.90	50.80	+0.05	50.75	-0.03	48.26	-0.05	47.63	-0.05	47.68	+0.03	50.17	+0.05	2.36	+0.13
-33	50.52	± 0.46	1.78	± 0.08	54.08	53.98	+0.05	53.92	-0.03	51.44	-0.05	50.80	-0.05	50.85	+0.03	53.34	+0.05	2.36	+0.13
-34	53.70	± 0.46	1.78	± 0.08	57.25	57.15	+0.05	57.10	-0.03	54.61	-0.05	53.98	-0.05	54.03	+0.03	56.52	+0.05	2.36	+0.13
-35	56.87	± 0.46	1.78	± 0.08	60.43	60.33	+0.05	60.27	-0.03	57.79	-0.05	57.15	-0.05	57.20	+0.03	59.69	+0.05	2.36	+0.13
-36	60.05	± 0.46	1.78	± 0.08	63.60	63.50	+0.05	63.45	-0.03	60.96	-0.05	60.33	-0.05	60.38	+0.03	62.87	+0.05	2.36	+0.13
-37	63.22	± 0.46	1.78	± 0.08	66.78	66.68	+0.05	66.62	-0.03	64.14	-0.05	63.50	-0.05	63.55	+0.03	66.04	+0.05	2.36	+0.13
-38	66.40	± 0.51	1.78	± 0.08	69.95	69.85	+0.05	69.80	-0.03	67.31	-0.05	66.68	-0.05	66.73	+0.03	69.22	+0.05	2.36	+0.13
-39	69.57	± 0.51	1.78	± 0.08	73.13	73.03	+0.05	72.97	-0.03	70.49	-0.05	69.85	-0.05	69.90	+0.03	72.39	+0.05	2.36	+0.13
-40	72.75	± 0.51	1.78	± 0.08	76.30	76.20	+0.05	76.15	-0.03	73.66	-0.05	73.03	-0.05	73.08	+0.03	75.57	+0.05	2.36	+0.13

Figure 102: Male gland

Figure 103: Female gland

STATIC SEALS

	O-RING DIMENSIONS					MALE GLAND						FEMALE GLAND						GROOVE G*	
SIZE	ID	TOL	W	TOL	$\begin{gathered} \text { MEAN } \\ \text { OD } \\ \text { (REF) } \end{gathered}$	(BO	RE)	(P	G)	$\begin{array}{r} 0 \\ \text { (GRO } \end{array}$	VE)	(T	E)	(TH	AT)	(GRI	VE)		
		(\pm)		(\pm)		DIA	$\begin{aligned} & \text { TOL } \\ & -.00 \end{aligned}$	DIA	$\begin{aligned} & \mathrm{TOL} \\ & +.00 \end{aligned}$	DIA	$\begin{gathered} \mathrm{TOL} \\ +.00 \end{gathered}$	DIA	$\begin{aligned} & \mathrm{TOL} \\ & +.00 \end{aligned}$	DIA	$\begin{aligned} & \text { TOL } \\ & -.00 \end{aligned}$	DIA	$\begin{aligned} & \text { TOL } \\ & -.00 \end{aligned}$	WIDTH	$\begin{gathered} \text { TOL } \\ -.00 \end{gathered}$
-41	75.92	± 0.61	1.78	± 0.08	79.48	79.38	+0.05	79.32	-0.03	76.84	-0.05	76.20	-0.05	76.25	+0.03	78.74	+0.05	2.36	+0.13
-42	82.27	± 0.61	1.78	± 0.08	85.83	85.73	+0.05	85.67	-0.03	83.19	-0.05	82.55	-0.05	82.60	+0.03	85.09	+0.05	2.36	+0.13
-43	88.62	± 0.61	1.78	± 0.08	92.18	92.08	+0.05	92.02	-0.03	89.54	-0.05	88.90	-0.05	88.95	+0.03	91.44	+0.05	2.36	+0.13
-44	94.97	± 0.69	1.78	± 0.08	98.53	98.43	+0.05	98.37	-0.03	95.89	-0.05	95.25	-0.05	95.30	+0.03	97.79	+0.05	2.36	+0.13
-45	101.32	± 0.69	1.78	± 0.08	104.88	104.78	+0.05	104.72	-0.03	102.24	-0.05	101.60	-0.05	101.65	+0.03	104.14	+0.05	2.36	+0.13
-46	107.67	± 0.76	1.78	± 0.08	111.23	111.13	+0.05	111.07	-0.03	108.59	-0.05	107.95	-0.05	108.00	+0.03	110.49	+0.05	2.36	+0.13
-47	114.02	± 0.76	1.78	± 0.08	117.58	117.48	+0.05	117.42	-0.03	114.94	-0.05	114.30	-0.05	114.35	+0.03	116.84	+0.05	2.36	+0.13
-48	120.37	± 0.76	1.78	± 0.08	123.93	123.83	+0.05	123.77	-0.03	121.29	-0.05	120.65	-0.05	120.70	+0.03	123.19	+0.05	2.36	+0.13
-49	126.72	± 0.94	1.78	± 0.08	130.28	130.18	+0.05	130.12	-0.03	127.64	-0.05	127.00	-0.05	127.05	+0.03	129.54	+0.05	2.36	+0.13
-50	133.07	± 0.94	1.78	± 0.08	136.63	136.53	+0.05	136.47	-0.03	133.99	-0.05	133.35	-0.05	133.40	+0.03	135.89	+0.05	2.36	+0.13
-102	1.24	± 0.13	2.62	± 0.08	6.48	6.27	+0.05	6.22	-0.03	2.16	-0.05	1.57	-0.05	1.63	+0.03	5.69	+0.05	3.56	+0.13
-103	2.06	± 0.13	2.62	± 0.08	7.29	7.06	+0.05	7.01	-0.03	2.95	-0.05	2.39	-0.05	2.44	+0.03	6.50	+0.05	3.56	+0.13
-104	2.84	± 0.13	2.62	± 0.08	8.08	7.87	+0.05	7.82	-0.03	3.76	-0.05	3.18	-0.05	3.23	+0.03	7.29	+0.05	3.56	+0.13
-105	3.63	± 0.13	2.62	± 0.08	8.86	8.69	+0.05	8.64	-0.03	4.57	-0.05	3.96	-0.05	4.01	+0.03	8.08	+0.05	3.56	+0.13
-106	4.42	± 0.13	2.62	± 0.08	9.65	9.50	+0.05	9.45	-0.03	5.38	-0.05	4.75	-0.05	4.80	+0.03	8.86	+0.05	3.56	+0.13
-107	5.23	± 0.13	2.62	± 0.08	10.46	10.29	+0.05	10.24	-0.03	6.17	-0.05	5.56	-0.05	5.61	+0.03	9.68	+0.05	3.56	+0.13
-108	6.02	± 0.13	2.62	± 0.08	11.25	11.10	+0.05	11.05	-0.03	6.99	-0.05	6.35	-0.05	6.40	+0.03	10.46	+0.05	3.56	+0.13

Figure 102: Male gland

Figure 103: Female gland

STATIC SEALS

Figure 102: Male gland

Figure 103: Female gland

STATIC SEALS

Figure 102: Male gland

Figure 103: Female gland

STATIC SEALS

Figure 102: Male gland

Figure 103: Female gland

STATIC SEALS

	O-RING DIMENSIONS					MALE GLAND						FEMALE GLAND						GROOVE G*	
SIZE	ID	TOL	W	TOL															
					(REF)	((GRO		(TUB		(THR		(GROO	VE)		
		(\pm)		(\pm)							TOL		TOL	DIA		DIA	TOL	WIDTH	TOL
							-. 00		+. 00		+. 00		+. 00		-. 00		-. 00		-. 00
-166	171.12	± 1.02	2.62	± 0.08	176.35	176.20	+0.05	176.15	-0.03	172.09	-0.05	171.45	-0.05	171.50	+0.03	175.56	+0.05	3.56	+0.13
-167	177.47	± 1.02	2.62	± 0.08	182.70	182.55	+0.05	182.50	-0.03	178.44	-0.05	177.80	-0.05	177.85	+0.03	181.91	+0.05	3.56	+0.13
-168	183.82	± 1.14	2.62	± 0.08	189.05	188.90	+0.05	188.85	-0.03	184.79	-0.05	184.15	-0.05	184.20	+0.03	188.26	+0.05	3.56	+0.13
-169	190.17	± 1.14	2.62	± 0.08	195.40	195.25	+0.05	195.20	-0.03	191.14	-0.05	190.50	-0.05	190.55	+0.03	194.61	+0.05	3.56	+0.13
-170	196.52	± 1.14	2.62	± 0.08	201.75	201.60	+0.05	201.55	-0.03	197.49	-0.05	196.85	-0.05	196.90	+0.03	200.96	+0.05	3.56	+0.13
-171	202.87	± 1.14	2.62	± 0.08	208.10	207.95	+0.05	207.90	-0.03	203.84	-0.05	203.20	-0.05	203.25	+0.03	207.31	+0.05	3.56	+0.13
-172	209.22	± 1.27	2.62	± 0.08	214.45	214.30	+0.05	214.25	-0.03	210.19	-0.05	209.55	-0.05	209.60	+0.03	213.66	+0.05	3.56	+0.13
-173	215.57	± 1.27	2.62	± 0.08	220.80	220.65	+0.05	220.60	-0.03	216.54	-0.05	215.90	-0.05	215.95	+0.03	220.01	+0.05	3.56	+0.13
-174	221.92	± 1.27	2.62	± 0.08	227.15	227.00	+0.05	226.95	-0.03	222.89	-0.05	222.25	-0.05	222.30	+0.03	226.36	+0.05	3.56	+0.13
-175	228.27	± 1.27	2.62	± 0.08	233.50	233.35	+0.05	233.30	-0.03	229.24	-0.05	228.60	-0.05	228.65	+0.03	232.71	+0.05	3.56	+0.13
-176	234.62	± 1.40	2.62	± 0.08	239.85	239.70	+0.05	239.65	-0.03	235.59	-0.05	234.95	-0.05	235.00	+0.03	239.06	+0.05	3.56	+0.13
-177	240.97	± 1.40	2.62	± 0.08	246.20	246.05	+0.05	246.00	-0.03	241.94	-0.05	241.30	-0.05	241.35	+0.03	245.41	+0.05	3.56	+0.13
-178	247.32	± 1.40	2.62	± 0.08	252.55	252.40	+0.05	252.35	-0.03	248.29	-0.05	247.65	-0.05	247.70	+0.03	251.76	+0.05	3.56	+0.13
-201	4.34	± 0.13	3.53	± 0.10	11.40	11.10	+0.05	11.02	-0.03	5.46	-0.05	4.75	-0.05	4.83	+0.03	10.39	+0.05	4.75	+0.13
-202	5.94	± 0.13	3.53	± 0.10	13.00	12.70	+0.05	12.62	-0.03	7.06	-0.05	6.35	-0.05	6.43	+0.03	11.99	+0.05	4.75	+0.13
-203	7.52	± 0.13	3.53	± 0.10	14.58	14.27	+0.05	14.20	-0.03	8.64	-0.05	7.92	-0.05	8.00	+0.03	13.56	+0.05	4.75	+0.13
-204	9.12	± 0.13	3.53	± 0.10	16.18	15.88	+0.05	15.80	-0.03	10.24	-0.05	9.53	-0.05	9.60	+0.03	15.16	+0.05	4.75	+0.13
-205	10.69	± 0.13	3.53	± 0.10	17.75	17.45	+0.05	17.37	-0.03	11.81	-0.05	11.10	-0.05	11.18	+0.03	16.74	+0.05	4.75	+0.13
-206	12.29	± 0.13	3.53	± 0.10	19.35	19.05	+0.05	18.97	-0.03	13.41	-0.05	12.70	-0.05	12.78	+0.03	18.34	+0.05	4.75	+0.13

Figure 102: Male gland

Figure 103: Female gland

STATIC SEALS

Figure 102: Male gland

Figure 103: Female gland

STATIC SEALS

	O-RING DIMENSIONS					MALE GLAND						FEMALE GLAND						GROOVE G*	
SIZE	ID	TOL	W	TOL	$\begin{gathered} \text { MEAN } \\ \text { OD } \\ \text { (REF) } \end{gathered}$	(E)	(Pl	G)		VE)	(Tl	E)	(THI	AT)	$\begin{array}{r} \text { F } \\ \text { (GROO } \end{array}$	JVE)		
		(\pm)		(\pm)		DIA	$\begin{aligned} & \text { TOL } \\ & -.00 \end{aligned}$	DIA	$\begin{array}{r} \mathrm{TOL} \\ +.00 \end{array}$	DIA	$\begin{array}{r} \text { TOL } \\ +.00 \end{array}$	DIA	$\begin{array}{r} \text { TOL } \\ +.00 \end{array}$	DIA	$\begin{aligned} & \mathrm{TOL} \\ & -.00 \end{aligned}$	DIA	$\begin{gathered} \mathrm{TOL} \\ -.00 \end{gathered}$	WIDTH	$\begin{gathered} \text { TOL } \\ -.00 \end{gathered}$
-231	66.27	± 0.51	3.53	± 0.10	73.33	73.03	+0.05	72.95	-0.03	67.39	-0.05	66.68	-0.05	66.75	+0.03	72.31	+0.05	4.75	+0.13
-232	69.44	± 0.61	3.53	± 0.10	76.50	76.20	+0.05	76.12	-0.03	70.56	-0.05	69.85	-0.05	69.93	+0.03	75.49	+0.05	4.75	+0.13
-233	72.62	± 0.61	3.53	± 0.10	79.68	79.38	+0.05	79.30	-0.03	73.74	-0.05	73.03	-0.05	73.10	+0.03	78.66	+0.05	4.75	+0.13
-234	75.79	± 0.61	3.53	± 0.10	82.85	82.55	+0.05	82.47	-0.03	76.91	-0.05	76.20	-0.05	76.28	+0.03	81.84	+0.05	4.75	+0.13
-235	78.97	± 0.61	3.53	± 0.10	86.03	85.73	+0.05	85.65	-0.03	80.09	-0.05	79.38	-0.05	79.45	+0.03	85.01	+0.05	4.75	+0.13
-236	82.14	± 0.61	3.53	± 0.10	89.20	88.90	+0.05	88.82	-0.03	83.26	-0.05	82.55	-0.05	82.63	+0.03	88.19	+0.05	4.75	+0.13
-237	85.32	± 0.61	3.53	± 0.10	92.38	92.08	+0.05	92.00	-0.03	86.44	-0.05	85.73	-0.05	85.80	+0.03	91.36	+0.05	4.75	+0.13
-238	88.49	± 0.61	3.53	± 0.10	95.55	95.25	+0.05	95.17	-0.03	89.61	-0.05	88.90	-0.05	88.98	+0.03	94.54	+0.05	4.75	+0.13
-239	91.67	± 0.71	3.53	± 0.10	98.73	98.43	+0.05	98.35	-0.03	92.79	-0.05	92.08	-0.05	92.15	+0.03	97.71	+0.05	4.75	+0.13
-240	94.84	± 0.71	3.53	± 0.10	101.90	101.60	+0.05	101.52	-0.03	95.96	-0.05	95.25	-0.05	95.33	+0.03	100.89	+0.05	4.75	+0.13
-241	98.02	± 0.71	3.53	± 0.10	105.08	104.78	+0.05	104.70	-0.03	99.14	-0.05	98.43	-0.05	98.50	+0.03	104.06	+0.05	4.75	+0.13
-242	101.19	± 0.71	3.53	± 0.10	108.25	107.95	+0.05	107.87	-0.03	102.31	-0.05	101.60	-0.05	101.68	+0.03	107.24	+0.05	4.75	+0.13
-243	104.37	± 0.71	3.53	± 0.10	111.43	111.13	+0.05	111.05	-0.03	105.49	-0.05	104.78	-0.05	104.85	+0.03	110.41	+0.05	4.75	+0.13
-244	107.54	± 0.76	3.53	± 0.10	114.60	114.30	+0.05	114.22	-0.03	108.66	-0.05	107.95	-0.05	108.03	+0.03	113.59	+0.05	4.75	+0.13

Figure 102: Male gland

Figure 103: Female gland

STATIC SEALS

	O-RING DIMENSIONS					MALE GLAND						FEMALE GLAND						GROOVE G*	
SIZE	ID	TOL	W	TOL	$\begin{aligned} & \text { MEAN } \\ & \text { OD } \\ & \text { (REF) } \end{aligned}$	(B	E)	(P	G)	(GR	VE)	(T	E)	(TH)	AT)	(GR	VE)		
		(\pm)		(\pm)		DIA	TOL -. 00	DIA	$\begin{aligned} & \mathrm{TOL} \\ & +.00 \end{aligned}$	DIA	$\begin{array}{r} \mathrm{TOL} \\ +.00 \end{array}$	DIA	$\begin{aligned} & \mathrm{TOL} \\ & +.00 \end{aligned}$	DIA	$\begin{aligned} & \mathrm{TOL} \\ & -.00 \end{aligned}$	DIA	$\begin{aligned} & \text { TOL } \\ & -.00 \end{aligned}$	WIDTH	$\begin{aligned} & \text { TOL } \\ & -.00 \end{aligned}$
-245	110.72	± 0.76	3.53	± 0.10	117.78	117.48	+0.05	117.40	-0.03	111.84	-0.05	111.13	-0.05	111.20	+0.03	116.76	+0.05	4.75	+0.13
-246	113.89	± 0.76	3.53	± 0.10	120.95	120.65	+0.05	120.57	-0.03	115.01	-0.05	114.30	-0.05	114.38	+0.03	119.94	+0.05	4.75	+0.13
-247	117.07	± 0.76	3.53	± 0.10	124.13	123.83	+0.05	123.75	-0.03	118.19	-0.05	117.48	-0.05	117.55	+0.03	123.11	+0.05	4.75	+0.13
-248	120.24	± 0.76	3.53	± 0.10	127.30	127.00	+0.05	126.92	-0.03	121.36	-0.05	120.65	-0.05	120.73	+0.03	126.29	+0.05	4.75	+0.13
-249	123.42	± 0.89	3.53	± 0.10	130.48	130.18	+0.05	130.10	-0.03	124.54	-0.05	123.83	-0.05	123.90	+0.03	129.46	+0.05	4.75	+0.13
-250	126.59	± 0.89	3.53	± 0.10	133.65	133.35	+0.05	133.27	-0.03	127.71	-0.05	127.00	-0.05	127.08	+0.03	132.64	+0.05	4.75	+0.13
-251	129.77	± 0.89	3.53	± 0.10	136.83	136.53	+0.05	136.45	-0.03	130.89	-0.05	130.18	-0.05	130.25	+0.03	135.81	+0.05	4.75	+0.13
-252	132.94	± 0.89	3.53	± 0.10	140.00	139.70	+0.05	139.62	-0.03	134.06	-0.05	133.35	-0.05	133.43	+0.03	138.99	+0.05	4.75	+0.13
-253	136.12	± 0.89	3.53	± 0.10	143.18	142.88	+0.05	142.80	-0.03	137.24	-0.05	136.53	-0.05	136.60	+0.03	142.16	+0.05	4.75	$+0.13$
-254	139.29	± 0.89	3.53	± 0.10	146.35	146.05	+0.05	145.97	-0.03	140.41	-0.05	139.70	-0.05	139.78	+0.03	145.34	+0.05	4.75	+0.13
-255	142.47	± 0.89	3.53	± 0.10	149.53	149.23	+0.05	149.15	-0.03	143.59	-0.05	142.88	-0.05	142.95	+0.03	148.51	+0.05	4.75	+0.13
-256	145.64	± 0.89	3.53	± 0.10	152.70	152.40	+0.05	152.32	-0.03	146.76	-0.05	146.05	-0.05	146.13	+0.03	151.69	+0.05	4.75	+0.13
-257	148.82	± 0.89	3.53	± 0.10	155.88	155.58	+0.05	155.50	-0.03	149.94	-0.05	149.23	-0.05	149.30	+0.03	154.86	+0.05	4.75	+0.13
-258	151.99	± 0.89	3.53	± 0.10	159.05	158.75	+0.05	158.67	-0.03	153.11	-0.05	152.40	-0.05	152.48	+0.03	158.04	+0.05	4.75	+0.13
-259	158.34	± 1.02	3.53	± 0.10	165.40	165.10	+0.05	165.02	-0.03	159.46	-0.05	158.75	-0.05	158.83	+0.03	164.39	+0.05	4.75	+0.13
-260	164.69	± 1.02	3.53	± 0.10	171.75	171.45	+0.05	171.37	-0.03	165.81	-0.05	165.10	-0.05	165.18	+0.03	170.74	+0.05	4.75	+0.13
-261	171.04	± 1.02	3.53	± 0.10	178.10	177.80	+0.05	177.72	-0.03	172.16	-0.05	171.45	-0.05	171.53	+0.03	177.09	+0.05	4.75	+0.13
-262	177.39	± 1.02	3.53	± 0.10	184.45	184.15	+0.05	184.07	-0.03	178.51	-0.05	177.80	-0.05	177.88	+0.03	183.44	$+0.05$	4.75	+0.13
-263	183.74	± 1.14	3.53	± 0.10	190.80	190.50	+0.05	190.42	-0.03	184.86	-0.05	184.15	-0.05	184.23	+0.03	189.79	+0.05	4.75	+0.13

Figure 102: Male gland

Figure 103: Female gland

STATIC SEALS

Figure 102: Male gland

Figure 103: Female gland

STATIC SEALS

	O-RING DIMENSIONS					MALE GLAND						FEMALE GLAND						GROOVE G*	
SIZE	ID	TOL	W	TOL	$\begin{gathered} \text { MEAN } \\ \text { OD } \\ \text { (REF) } \end{gathered}$	(B	PRE)	(PL	G)	$\begin{array}{r} c \\ \text { (GRO } \end{array}$	VE)	(E)	(TH	AT)		VE)		
		(\pm)		(\pm)		DIA	$\begin{aligned} & \text { TOL } \\ & -.00 \end{aligned}$	DIA	$\begin{array}{r} \mathrm{TOL} \\ +.00 \end{array}$	DIA	$\begin{array}{r} \text { TOL } \\ +.00 \end{array}$	DIA	$\begin{aligned} & \mathrm{TOL} \\ & +.00 \end{aligned}$	DIA	$\begin{gathered} \text { TOL } \\ -.00 \end{gathered}$	DIA	$\begin{aligned} & \text { TOL } \\ & -.00 \end{aligned}$	WIDTH	$\begin{gathered} \mathrm{TOL} \\ -.00 \end{gathered}$
-309	10.46	± 0.13	5.33	± 0.13	21.13	20.62	+0.05	20.55	-0.03	11.99	-0.10	11.10	-0.05	11.18	+0.03	19.74	+0.10	7.14	+0.13
-310	12.07	± 0.13	5.33	± 0.13	22.73	22.23	+0.05	22.15	-0.03	13.59	-0.10	12.70	-0.05	12.78	+0.03	21.34	+0.10	7.14	+0.13
-311	13.64	± 0.18	5.33	± 0.13	24.31	23.80	+0.05	23.72	-0.03	15.16	-0.10	14.27	-0.05	14.35	+0.03	22.91	+0.10	7.14	+0.13
-312	15.24	± 0.23	5.33	± 0.13	25.91	25.40	+0.05	25.32	-0.03	16.76	-0.10	15.88	-0.05	15.95	+0.03	24.51	+0.10	7.14	+0.13
-313	16.81	± 0.23	5.33	± 0.13	27.48	26.97	+0.05	26.90	-0.03	18.34	-0.10	17.45	-0.05	17.53	+0.03	26.09	+0.10	7.14	+0.13
-314	18.42	± 0.25	5.33	± 0.13	29.08	28.58	+0.05	28.50	-0.03	19.94	-0.10	19.05	-0.05	19.13	+0.03	27.69	+0.10	7.14	+0.13
-315	19.99	± 0.25	5.33	± 0.13	30.66	30.15	+0.05	30.07	-0.03	21.51	-0.10	20.62	-0.05	20.70	+0.03	29.26	+0.10	7.14	+0.13
-316	21.59	± 0.25	5.33	± 0.13	32.26	31.75	+0.05	31.67	-0.03	23.11	-0.10	22.23	-0.05	22.30	+0.03	30.86	+0.10	7.14	+0.13
-317	23.16	± 0.25	5.33	± 0.13	33.83	33.32	+0.05	33.25	-0.03	24.69	-0.10	23.80	-0.05	23.88	+0.03	32.44	+0.10	7.14	+0.13
-318	24.77	± 0.25	5.33	± 0.13	35.43	34.93	+0.05	34.85	-0.03	26.29	-0.10	25.40	-0.05	25.48	+0.03	34.04	+0.10	7.14	+0.13
-319	26.34	± 0.25	5.33	± 0.13	37.01	36.50	+0.05	36.42	-0.03	27.86	-0.10	26.97	-0.05	27.05	+0.03	35.61	+0.10	7.14	+0.13
-320	27.94	± 0.30	5.33	± 0.13	38.61	38.10	+0.05	38.02	-0.03	29.46	-0.10	28.58	-0.05	28.65	+0.03	37.21	+0.10	7.14	+0.13
-321	29.51	± 0.30	5.33	± 0.13	40.18	39.67	+0.05	39.60	-0.03	31.04	-0.10	30.15	-0.05	30.23	+0.03	38.79	+0.10	7.14	+0.13
-322	31.12	± 0.30	5.33	± 0.13	41.78	41.28	+0.05	41.20	-0.03	32.64	-0.10	31.75	-0.05	31.83	+0.03	40.39	+0.10	7.14	+0.13
-323	32.69	± 0.30	5.33	± 0.13	43.36	42.85	+0.05	42.77	-0.03	34.21	-0.10	33.32	-0.05	33.40	+0.03	41.96	+0.10	7.14	+0.13
-324	34.29	± 0.30	5.33	± 0.13	44.96	44.45	+0.05	44.37	-0.03	35.81	-0.10	34.93	-0.05	35.00	+0.03	43.56	+0.10	7.14	+0.13
-325	37.47	± 0.38	5.33	± 0.13	48.13	47.63	+0.05	47.55	-0.03	38.99	-0.10	38.10	-0.05	38.18	+0.03	46.74	+0.10	7.14	+0.13

Figure 102: Male gland

Figure 103: Female gland

STATIC SEALS

Figure 102: Male gland

Figure 103: Female gland

STATIC SEALS

Figure 102: Male gland

Figure 103: Female gland

STATIC SEALS

Figure 102: Male gland

Figure 103: Female gland

STATIC SEALS

Figure 102: Male gland

Figure 103: Female gland

STATIC SEALS

Figure 102: Male gland

Figure 103: Female gland

STATIC SEALS

SIZE	O-RING DIMENSIONS					MALE GLAND						FEMALE GLAND						GROOVE G*	
	ID	TOL	W	TOL	$\begin{aligned} & \text { MEAN } \\ & \text { OD } \\ & \text { (REF) } \end{aligned}$	$\begin{gathered} \text { A } \\ \text { (BORE) } \end{gathered}$		$\begin{gathered} B \\ (\text { PLUG) } \end{gathered}$		$\begin{gathered} \text { C } \\ \text { (GROOVE) } \end{gathered}$		$\begin{gathered} \text { D } \\ \text { (TUBE) } \end{gathered}$		E (THROAT)		$\begin{gathered} F \\ \text { (GROOVE) } \end{gathered}$			
		(\pm)		(\pm)		DIA	$\begin{gathered} \text { TOL } \\ -.00 \end{gathered}$	DIA	$\begin{gathered} \mathrm{TOL} \\ +.00 \end{gathered}$	DIA	$\begin{array}{r} \text { TOL } \\ +.00 \end{array}$	DIA	$\begin{array}{r} \mathrm{TOL} \\ +.00 \end{array}$	DIA	$\begin{aligned} & \text { TOL } \\ & -.00 \end{aligned}$	DIA	$\begin{gathered} \text { TOL } \\ -.00 \end{gathered}$	WIDTH	$\begin{gathered} \mathrm{TOL} \\ -.00 \end{gathered}$
-451	278.77	± 1.52	6.99	± 0.15	292.74	292.10	+0.05	292.00	-0.03	280.62	-0.10	279.40	-0.05	279.50	+0.03	290.88	+0.10	9.53	+0.13
-452	291.47	± 1.52	6.99	± 0.15	305.44	304.80	+0.05	304.70	-0.03	293.32	-0.10	292.10	-0.05	266.80	+0.03	278.18	+0.10	9.53	+0.13
-453	304.17	± 1.52	6.99	± 0.15	318.14	317.50	+0.05	317.40	-0.03	306.02	-0.10	304.80	-0.05	304.90	+0.03	316.28	+0.10	9.53	+0.13
-454	316.87	± 1.52	6.99	± 0.15	330.84	330.20	+0.05	330.10	-0.03	318.72	-0.10	317.50	-0.05	317.60	+0.03	328.98	+0.10	9.53	+0.13
-455	329.57	± 1.52	6.99	± 0.15	343.54	342.90	+0.05	342.80	-0.03	331.42	-0.10	330.20	-0.05	330.30	+0.03	341.68	+0.10	9.53	+0.13
-456	342.27	± 1.78	6.99	± 0.15	356.24	355.60	+0.05	355.50	-0.03	344.12	-0.10	342.90	-0.05	343.00	+0.03	354.38	+0.10	9.53	+0.13
-457	354.97	± 1.78	6.99	± 0.15	368.94	368.30	+0.05	368.20	-0.03	356.82	-0.10	355.60	-0.05	355.70	+0.03	367.08	+0.10	9.53	+0.13
-458	367.67	± 1.78	6.99	± 0.15	381.64	381.00	+0.05	380.90	-0.03	369.52	-0.10	368.30	-0.05	368.40	+0.03	379.78	+0.10	9.53	+0.13
-459	380.37	± 1.78	6.99	± 0.15	394.34	393.70	+0.05	393.60	-0.03	382.22	-0.10	381.00	-0.05	381.10	+0.03	392.48	+0.10	9.53	+0.13
-460	393.07	± 1.78	6.99	± 0.15	407.04	406.40	+0.05	406.30	-0.03	394.92	-0.10	393.70	-0.05	393.80	+0.03	405.18	+0.10	9.53	+0.13
-461	405.26	± 1.91	6.99	± 0.15	419.23	419.10	+0.05	419.00	-0.03	407.62	-0.10	406.40	-0.05	406.50	+0.03	417.88	+0.10	9.53	+0.13
-462	417.96	± 1.91	6.99	± 0.15	431.93	431.80	+0.05	431.70	-0.03	420.32	-0.10	419.10	-0.05	419.20	+0.03	430.58	+0.10	9.53	+0.13
-463	430.66	± 2.03	6.99	± 0.15	444.63	444.50	+0.05	444.40	-0.03	433.02	-0.10	431.80	-0.05	431.90	+0.03	443.28	+0.10	9.53	+0.13
-464	443.36	± 2.16	6.99	± 0.15	457.33	457.20	+0.05	457.10	-0.03	445.72	-0.10	444.50	-0.05	444.60	+0.03	455.98	+0.10	9.53	+0.13
-465	456.06	± 2.16	6.99	± 0.15	470.03	469.90	+0.05	469.80	-0.03	458.42	-0.10	457.20	-0.05	457.30	+0.03	468.68	+0.10	9.53	+0.13
-466	468.76	± 2.16	6.99	± 0.15	482.73	482.60	+0.05	482.50	-0.03	471.12	-0.10	469.90	-0.05	470.00	+0.03	481.38	+0.10	9.53	+0.13
-467	481.46	± 2.29	6.99	± 0.15	495.43	495.30	+0.05	495.20	-0.03	483.82	-0.10	482.60	-0.05	482.70	+0.03	494.08	+0.10	9.53	+0.13
-468	494.16	± 2.29	6.99	± 0.15	508.13	508.00	+0.05	507.90	-0.03	496.52	-0.10	495.30	-0.05	495.40	+0.03	506.78	+0.10	9.53	+0.13

Figure 102: Male gland

Figure 103: Female gland

STATIC SEALS

SIZE	O-RING DIMENSIONS					MALE GLAND						FEMALE GLAND						GROOVE G*	
	ID	TOL(\pm)	W	TOL(\pm)	$\begin{aligned} & \text { MEAN } \\ & \text { OD } \\ & \text { (REF) } \end{aligned}$	$\begin{gathered} \text { A } \\ \text { (BORE) } \end{gathered}$		$\begin{gathered} \text { B } \\ \text { (PLUG) } \end{gathered}$		$\begin{gathered} \text { C } \\ \text { (GROOVE) } \end{gathered}$		D(TUBE)		E(THROAT)		F (GROOVE)		WIDTH	$\begin{aligned} & \text { TOL } \\ & -.00 \end{aligned}$
						DIA	$\begin{aligned} & \text { TOL } \\ & -.00 \end{aligned}$	DIA	$\begin{gathered} \text { TOL } \\ +.00 \end{gathered}$	DIA	$\begin{aligned} & \text { TOL } \\ & +.00 \end{aligned}$	DIA	$\begin{aligned} & \text { TOL } \\ & +.00 \end{aligned}$	DIA	$\begin{aligned} & \text { TOL } \\ & -.00 \end{aligned}$	DIA	$\begin{aligned} & \text { TOL } \\ & -.00 \end{aligned}$		
-469	506.86	± 2.41	6.99	± 0.15	520.83	520.70	+0.05	520.60	-0.03	509.22	-0.10	508.00	-0.05	508.10	+0.03	519.48	+0.10	9.53	+0.13
-470	532.26	± 2.41	6.99	± 0.15	546.23	546.10	+0.05	546.00	-0.03	534.62	-0.10	533.40	-0.05	533.50	+0.03	544.88	+0.10	9.53	+0.13
-471	557.66	± 2.54	6.99	± 0.15	571.63	571.50	+0.05	571.40	-0.03	560.02	-0.10	558.80	-0.05	558.90	+0.03	570.28	+0.10	9.53	+0.13
-472	582.68	± 2.67	6.99	± 0.15	596.65	596.90	+0.05	596.80	-0.03	585.42	-0.10	584.20	-0.05	584.30	+0.03	595.68	+0.10	9.53	+0.13
-473	608.08	± 2.79	6.99	± 0.15	622.05	622.30	+0.05	622.20	-0.03	610.82	-0.10	609.60	-0.05	609.70	+0.03	621.08	+0.10	9.53	+0.13
-474	633.48	± 2.92	6.99	± 0.15	647.45	647.70	+0.05	647.60	-0.03	636.22	-0.10	635.00	-0.05	635.10	+0.03	646.48	+0.10	9.53	+0.13
-475	658.88	± 3.05	6.99	± 0.15	672.85	673.10	+0.05	673.00	-0.03	661.62	-0.10	660.40	-0.05	660.50	+0.03	671.88	+0.10	9.53	+0.13

STATIC SEALS

Figure 104: Internal pressure

Figure 105: External pressure

Break corners 5° maximum

Figure 106: Surface Finish \& Shape Suggestions

SIZE	G H					R
	CROSS SECTION	GROOVE WIDTH	GLAND DEPTH	SQUEEZE		GROOVE RADIUS
			MIN-MAX	ACTUAL	\%	MIN-MAX
-004 thru -050	1.78 ± 0.08	3.18-3.43	1.24-1.40	0.30-0.61	18-33	0.25-0.51
-102 thru -178	2.62 ± 0.08	4.32-4.57	1.91-2.06	0.48-0.79	19-29	0.51-0.76
-102 thru -284	3.53 ± 0.10	5.33-5.59	2.72-2.87	0.56-0.91	16-25	0.51-0.76
-309 thru -395	5.33 ± 0.13	7.62-7.87	4.29-4.45	0.76-1.17	15-21	0.51-0.76
-425 thru -475	6.99 ± 0.15	9.02-9.27	5.87-6.02	0.81-1.27	12-18	0.51-0.76

Figure 107: Internal pressure

	O-RING DIMENSIONS									G		H	
SIZE	ID	TOL	W	TOL	$\begin{gathered} \text { MEAN } \\ \text { OD } \end{gathered}$	INTERNAL PRESSURE		EXTERNAL PRESSURE		$\begin{aligned} & \text { GROOVE } \\ & \text { WIDTH } \end{aligned}$		GLAND DEPTH	
		(\pm)		(\pm)		GLAND DIAMETER	TOL (+.00)	GLAND DIAMETER	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	MIN	MAX	MIN	MAX
-1	0.74	± 0.10	1.02	± 0.08	2.77								
-2	1.07	± 0.10	1.27	± 0.08	3.61								
-3	1.42	± 0.10	1.52	± 0.08	4.47								
-4	1.78	± 0.10	1.78	± 0.08	5.33			1.78	+0.13	3.18	3.43	1.24	1.40
-5	2.57	± 0.13	1.78	± 0.08	6.12			2.57	+0.13	3.18	3.43	1.24	1.40
-6	2.90	± 0.13	1.78	± 0.08	6.45			2.90	+0.13	3.18	3.43	1.24	1.40
-7	3.68	± 0.13	1.78	± 0.08	7.24			3.68	+0.13	3.18	3.43	1.24	1.40
-8	4.47	± 0.13	1.78	± 0.08	8.03			4.47	+0.13	3.18	3.43	1.24	1.40
-9	5.28	± 0.13	1.78	± 0.08	8.84			5.28	+0.13	3.18	3.43	1.24	1.40
-10	6.07	± 0.13	1.78	± 0.08	9.63			6.07	+0.13	3.18	3.43	1.24	1.40
-11	7.65	± 0.13	1.78	± 0.08	11.20	11.20	-0.13	7.65	+0.13	3.18	3.43	1.24	1.40
-12	9.25	± 0.13	1.78	± 0.08	12.80	12.80	-0.13	9.25	+0.13	3.18	3.43	1.24	1.40
-13	10.82	± 0.13	1.78	± 0.08	14.38	14.38	-0.13	10.82	+0.13	3.18	3.43	1.24	1.40
-14	12.42	± 0.13	1.78	± 0.08	15.98	15.98	-0.13	12.42	+0.13	3.18	3.43	1.24	1.40

Figure 107: Internal pressure

Figure 108: External pressure

STATIC SEALS

Figure 107: Internal pressure

Figure 108: External pressure

STATIC SEALS

Figure 107: Internal pressure

Figure 108: External pressure

STATIC SEALS

		O-RIN	DIME	SIIONS		A		B					
SIZE	ID	TOL	W	TOL	$\begin{gathered} \text { MEAN } \\ \text { OD } \end{gathered}$	INTERNAL PRE		EXTERNAL PRES				GLAN	DEPTH
		(\pm)		(\pm)		GLAND DIAMETER	TOL (+.00)	GLAND DIAMETER	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	MIN	MAX	MIN	MAX
-46	107.67	± 0.76	1.78	± 0.08	111.23	111.23	-0.13	107.67	+0.13	3.18	3.43	1.24	1.40
-47	114.02	± 0.76	1.78	± 0.08	117.58	117.58	-0.13	114.02	+0.13	3.18	3.43	1.24	1.40
-48	111.23	± 0.76	1.78	± 0.08	123.93	123.93	-0.13	120.37	+0.13	3.18	3.43	1.24	1.40
-49	126.72	± 0.94	1.78	± 0.08	130.28	130.28	-0.13	126.72	+0.13	3.18	3.43	1.24	1.40
-50	133.07	± 0.94	1.78	± 0.08	136.63	136.63	-0.13	133.07	+0.13	3.18	3.43	1.24	1.40
-102	1.24	± 0.13	2.62	± 0.08	6.48			1.24	+0.13	4.32	4.57	1.91	2.06
-103	2.06	± 0.13	2.62	± 0.08	7.29			2.06	+0.13	4.32	4.57	1.91	2.06
-104	2.84	± 0.13	2.62	± 0.08	8.08			2.84	+0.13	4.32	4.57	1.91	2.06
-105	3.63	± 0.13	2.62	± 0.08	8.86			3.63	+0.13	4.32	4.57	1.91	2.06
-106	4.42	± 0.13	2.62	± 0.08	9.65			4.42	+0.13	4.32	4.57	1.91	2.06
-107	5.23	± 0.13	2.62	± 0.08	10.46			5.23	+0.13	4.32	4.57	1.91	2.06
-108	6.02	± 0.13	2.62	± 0.08	11.25			6.02	+0.13	4.32	4.57	1.91	2.06
-109	7.59	± 0.13	2.62	± 0.08	12.83			7.59	+0.13	4.32	4.57	1.91	2.06
-110	9.19	± 0.13	2.62	± 0.08	14.43	14.43	-0.13	9.19	+0.13	4.32	4.57	1.91	2.06

Figure 107: Internal pressure

Figure 108: External pressure

STATIC SEALS

Figure 107: Internal pressure

Figure 108: External pressure

STATIC SEALS

Figure 107: Internal pressure

Figure 108: External pressure

STATIC SEALS

Figure 107: Internal pressure

Figure 108: External pressure

STATIC SEALS

Figure 107: Internal pressure

Figure 108: External pressure

STATIC SEALS

SIZE	O-RING DIMENSIONS					A		B		G		H	
	ID	TOL	W	TOL	$\begin{gathered} \text { MEAN } \\ \text { OD } \\ \text { (REF) } \end{gathered}$	INTERNAL PRESSURE		EXTERNAL PRESSURE		GROOVE WIDTH		GLAND DEPTH	
		(\pm)		(\pm)		GLAND DIAMETER	TOL (+.00)	GLAND DIAMETER	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	MIN	MAX	MIN	MAX
-171	202.87	± 1.14	2.62	± 0.08	208.10	208.10	-0.13	202.87	+0.13	4.32	4.57	1.91	2.06
-172	209.22	± 1.27	2.62	± 0.08	214.45	214.45	-0.13	209.22	+0.13	4.32	4.57	1.91	2.06
-173	215.57	± 1.27	2.62	± 0.08	220.80	220.80	-0.13	215.57	+0.13	4.32	4.57	1.91	2.06
-174	221.92	± 1.27	2.62	± 0.08	227.15	227.15	-0.13	221.92	+0.13	4.32	4.57	1.91	2.06
-175	228.27	± 1.27	2.62	± 0.08	233.50	233.50	-0.13	228.27	+0.13	4.32	4.57	1.91	2.06
-176	234.62	± 1.40	2.62	± 0.08	239.85	239.85	-0.13	234.62	+0.13	4.32	4.57	1.91	2.06
-177	240.97	± 1.40	2.62	± 0.08	246.20	246.20	-0.13	240.97	+0.13	4.32	4.57	1.91	2.06
-178	247.32	± 1.40	2.62	± 0.08	252.55	252.55	-0.13	247.32	+0.13	4.32	4.57	1.91	2.06
-201	4.34	± 0.13	3.53	± 0.10	11.40			4.34	+0.13	5.33	5.59	2.72	2.87
-202	5.94	± 0.13	3.53	± 0.10	13.00			5.94	+0.13	5.33	5.59	2.72	2.87
-203	7.52	± 0.13	3.53	± 0.10	14.58			7.52	+0.13	5.33	5.59	2.72	2.87
-204	9.12	± 0.13	3.53	± 0.10	16.18			9.12	+0.13	5.33	5.59	2.72	2.87
-205	10.69	± 0.13	3.53	± 0.10	17.75	17.75	-0.13	10.69	+0.13	5.33	5.59	2.72	2.87
-206	12.29	± 0.13	3.53	± 0.10	19.35	19.35	-0.13	12.29	+0.13	5.33	5.59	2.72	2.87
-207	13.87	± 0.18	3.53	± 0.10	20.93	20.93	-0.13	13.87	+0.13	5.33	5.59	2.72	2.87
-208	15.47	± 0.23	3.53	± 0.10	22.53	22.53	-0.13	15.47	+0.13	5.33	5.59	2.72	2.87

Figure 107: Internal pressure

Figure 108: External pressure

SIZE	O-RING DIMENSIONS					A		B					
	ID	TOL	W	$\begin{array}{cc} \text { TOL MEAN } \\ \text { OD } \\ & \\ \text { (REF) } \end{array}$		INTERNAL PRESSURE		EXTERNAL PRESSURE		GROOVE WIDTH		GLAND DEPTH	
		(\pm)				GLAND DIAMETER	TOL (+.00)	GLAND DIAMETER	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	MIN	MAX	MIN	MAX
-209	17.04	± 0.23	3.53	± 0.10	24.10	24.10	-0.13	17.04	+0.13	5.33	5.59	2.72	2.87
-210	18.64	± 0.25	3.53	± 0.10	25.70	25.70	-0.13	18.64	+0.13	5.33	5.59	2.72	2.87
-211	20.22	± 0.25	3.53	± 0.10	27.28	27.28	-0.13	20.22	+0.13	5.33	5.59	2.72	2.87
-212	21.82	± 0.25	3.53	± 0.10	28.88	28.88	-0.13	21.82	+0.13	5.33	5.59	2.72	2.87
-213	23.39	± 0.25	3.53	± 0.10	30.45	30.45	-0.13	23.39	+0.13	5.33	5.59	2.72	2.87
-214	24.99	± 0.25	3.53	± 0.10	32.05	32.05	-0.13	24.99	+0.13	5.33	5.59	2.72	2.87
-215	26.57	± 0.25	3.53	± 0.10	33.63	33.63	-0.13	26.57	+0.13	5.33	5.59	2.72	2.87
-216	28.17	± 0.30	3.53	± 0.10	35.23	35.23	-0.13	28.17	+0.13	5.33	5.59	2.72	2.87
-217	29.74	± 0.30	3.53	± 0.10	36.80	36.80	-0.13	29.74	+0.13	5.33	5.59	2.72	2.87
-218	31.34	± 0.30	3.53	± 0.10	38.40	38.40	-0.13	31.34	+0.13	5.33	5.59	2.72	2.87
-219	32.92	± 0.30	3.53	± 0.10	39.98	39.98	-0.13	32.92	+0.13	5.33	5.59	2.72	2.87
-220	34.52	± 0.30	3.53	± 0.10	41.58	41.58	-0.13	34.52	+0.13	5.33	5.59	2.72	2.87
-221	36.09	± 0.30	3.53	± 0.10	43.15	43.15	-0.13	36.09	+0.13	5.33	5.59	2.72	2.87
-222	37.69	± 0.38	3.53	± 0.10	44.75	44.75	-0.13	37.69	+0.13	5.33	5.59	2.72	2.87

Figure 107: Internal pressure

Figure 108: External pressure

STATIC SEALS

Figure 107: Internal pressure

Figure 108: External pressure

STATIC SEALS

Figure 107: Internal pressure

Figure 108: External pressure

STATIC SEALS

SIZE	O-RING DIMENSIONS					A		B		G		H	
	ID	TOL	W	TOL	$\begin{gathered} \text { MEAN } \\ \text { OD } \end{gathered}$	INTERNAL PRESSURE		EXTERNAL PRESSURE		GROOVEWIDTH		GLAND DEPTH	
		(\pm)		(\pm)		GLAND DIAMETER	TOL (+.00)	GLAND DIAMETER	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	MIN	MAX	MIN	MAX
-254	139.29	± 0.89	3.53	± 0.10	146.35	146.35	-0.13	139.29	+0.13	5.33	5.59	2.72	2.87
-255	142.47	± 0.89	3.53	± 0.10	149.53	149.53	-0.13	142.47	+0.13	5.33	5.59	2.72	2.87
-256	145.64	± 0.89	3.53	± 0.10	152.70	152.70	-0.13	145.64	+0.13	5.33	5.59	2.72	2.87
-257	148.82	± 0.89	3.53	± 0.10	155.88	155.88	-0.13	148.82	+0.13	5.33	5.59	2.72	2.87
-258	151.99	± 0.89	3.53	± 0.10	159.05	159.05	-0.13	151.99	+0.13	5.33	5.59	2.72	2.87
-259	158.34	± 1.02	3.53	± 0.10	165.40	165.40	-0.13	158.34	+0.13	5.33	5.59	2.72	2.87
-260	164.69	± 1.02	3.53	± 0.10	171.75	171.75	-0.13	164.69	+0.13	5.33	5.59	2.72	2.87
-261	171.04	± 1.02	3.53	± 0.10	178.10	178.10	-0.13	171.04	+0.13	5.33	5.59	2.72	2.87
-262	177.39	± 1.02	3.53	± 0.10	184.45	184.45	-0.13	177.39	+0.13	5.33	5.59	2.72	2.87
-263	183.74	± 1.14	3.53	± 0.10	190.80	190.80	-0.13	183.74	+0.13	5.33	5.59	2.72	2.87
-264	190.09	± 1.14	3.53	± 0.10	197.15	197.15	-0.13	190.09	+0.13	5.33	5.59	2.72	2.87
-265	196.44	± 1.14	3.53	± 0.10	203.50	203.50	-0.13	196.44	+0.13	5.33	5.59	2.72	2.87
-266	202.79	± 1.14	3.53	± 0.10	209.85	209.85	-0.13	202.79	+0.13	5.33	5.59	2.72	2.87
-267	209.14	± 1.27	3.53	± 0.10	216.20	216.20	-0.13	209.14	+0.13	5.33	5.59	2.72	2.87

Figure 107: Internal pressure

Figure 108: External pressure

STATIC SEALS

	O-RING DIMENSIONS					A		B		G		H	
SIZE	ID	TOL	W		$\begin{gathered} \text { MEAN } \\ \text { OD } \end{gathered}$	INTERNAL PRESSURE		EXTERNAL PRESSURE		GROOVE WIDTH		GLAND DEPTH	
		(\pm)		(\pm)		GLAND DIAMETER	TOL (+.00)	GLAND DIAMETER	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	MIN	MAX	MIN	MAX
-268	215.49	± 1.27	3.53	± 0.10	222.55	222.55	-0.13	215.49	+0.13	5.33	5.59	2.72	2.87
-269	221.84	± 1.27	3.53	± 0.10	228.90	228.90	-0.13	221.84	+0.13	5.33	5.59	2.72	2.87
-270	228.19	± 1.27	3.53	± 0.10	235.25	235.25	-0.13	228.19	+0.13	5.33	5.59	2.72	2.87
-271	234.54	± 1.40	3.53	± 0.10	241.60	241.60	-0.13	234.54	+0.13	5.33	5.59	2.72	2.87
-272	240.89	± 1.40	3.53	± 0.10	247.95	247.95	-0.13	240.89	+0.13	5.33	5.59	2.72	2.87
-273	247.24	± 1.40	3.53	± 0.10	254.30	254.30	-0.13	247.24	+0.13	5.33	5.59	2.72	2.87
-274	253.59	± 1.40	3.53	± 0.10	260.65	260.65	-0.13	253.59	+0.13	5.33	5.59	2.72	2.87
-275	266.29	± 1.40	3.53	± 0.10	273.35	273.35	-0.13	266.29	+0.13	5.33	5.59	2.72	2.87
-276	278.99	± 1.65	3.53	± 0.10	286.05	286.05	-0.13	278.99	+0.13	5.33	5.59	2.72	2.87
-277	291.69	± 1.65	3.53	± 0.10	298.75	298.75	-0.13	291.69	+0.13	5.33	5.59	2.72	2.87
-278	304.39	± 1.65	3.53	± 0.10	311.45	311.45	-0.13	304.39	+0.13	5.33	5.59	2.72	2.87
-279	329.79	± 1.65	3.53	± 0.10	336.85	336.85	-0.13	329.79	+0.13	5.33	5.59	2.72	2.87
-280	355.19	± 1.65	3.53	± 0.10	362.25	362.25	-0.13	355.19	+0.13	5.33	5.59	2.72	2.87
-281	380.59	± 1.65	3.53	± 0.10	387.65	387.65	-0.13	380.59	+0.13	5.33	5.59	2.72	2.87
-282	405.26	± 1.91	3.53	± 0.10	412.32	412.32	-0.13	405.26	+0.13	5.33	5.59	2.72	2.87
-283	430.66	± 2.03	3.53	± 0.10	437.72	437.72	-0.13	430.66	+0.13	5.33	5.59	2.72	2.87
-284	456.06	± 2.16	3.53	± 0.10	463.12	463.12	-0.13	456.06	+0.13	5.33	5.59	2.72	2.87
-309	10.46	± 0.13	5.33	± 0.13	21.13			10.46	+0.13	7.62	7.87	4.29	4.45
-310	12.07	± 0.13	5.33	± 0.13	22.73	22.73	-0.13	12.07	+0.13	7.62	7.87	4.29	4.45

Figure 107: Internal pressure

Figure 108: External pressure

STATIC SEALS

SIZE	O-RING DIMENSIONS					A		B		G		H	
	ID	TOL	W	$\begin{array}{cc} \text { TOL MEAN } \\ \text { OD } \\ & \\ \text { (REF) } \end{array}$		INTERNAL PRESSURE		EXTERNAL PRESSURE		GROOVE WIDTH		GLAND DEPTH	
		(\pm)				GLAND DIAMETER	TOL (+.00)	GLAND DIAMETER	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	MIN	MAX	MIN	MAX
-311	13.64	± 0.18	5.33	± 0.13	24.31	24.31	-0.13	13.64	+0.13	7.62	7.87	4.29	4.45
-312	15.24	± 0.23	5.33	± 0.13	25.91	25.91	-0.13	15.24	+0.13	7.62	7.87	4.29	4.45
-313	16.81	± 0.23	5.33	± 0.13	27.48	27.48	-0.13	16.81	+0.13	7.62	7.87	4.29	4.45
-314	18.42	± 0.25	5.33	± 0.13	29.08	29.08	-0.13	18.42	+0.13	7.62	7.87	4.29	4.45
-315	19.99	± 0.25	5.33	± 0.13	30.66	30.66	-0.13	19.99	+0.13	7.62	7.87	4.29	4.45
-316	21.59	± 0.25	5.33	± 0.13	32.26	32.26	-0.13	21.59	+0.13	7.62	7.87	4.29	4.45
-317	23.16	± 0.25	5.33	± 0.13	33.83	33.83	-0.13	24.77	+0.13	7.62	7.87	4.29	4.45
-318	24.77	± 0.25	5.33	± 0.13	35.43	35.43	-0.13	24.77	+0.13	7.62	7.87	4.29	4.45
-319	26.34	± 0.25	5.33	± 0.13	37.01	37.01	-0.13	26.34	+0.13	7.62	7.87	4.29	4.45
-320	27.94	± 0.30	5.33	± 0.13	38.61	38.61	-0.13	27.94	+0.13	7.62	7.87	4.29	4.45
-321	29.51	± 0.30	5.33	± 0.13	40.18	40.18	-0.13	29.51	+0.13	7.62	7.87	4.29	4.45
-322	31.12	± 0.30	5.33	± 0.13	41.78	41.78	-0.13	31.12	+0.13	7.62	7.87	4.29	4.45

Figure 107: Internal pressure

Figure 108: External pressure

STATIC SEALS

Figure 107: Internal pressure

Figure 108: External pressure

STATIC SEALS

Figure 107: Internal pressure

Figure 108: External pressure

STATIC SEALS

Figure 107: Internal pressure

Figure 108: External pressure

STATIC SEALS

Figure 107: Internal pressure

Figure 108: External pressure

STATIC SEALS

Figure 107: Internal pressure

Figure 108: External pressure

STATIC SEALS

Figure 107: Internal pressure

Figure 108: External pressure

STATIC SEALS

Figure 107: Internal pressure

Figure 108: External pressure

STATIC SEALS

STATIC SEALS

Figure 110: Compressed

SIZE		G	H		R1	R2

STATIC SEALS

Figure 111: Crush seal

SIZE	A		
		GLAND DEPTH	

Figure 112: Tube Fitting

NOTES:

1. Finished tapered counterbore (see Figure 112) shall be free from longitudinal and spiral tool marks. Annular tool marks up to $2.5 \mu \mathrm{~m}$ maximum are permissible.
2. Diameter C applies only when tap drill cannot pass through entire boss.
3. Diameter D shall be concentric with thread pitch diameter within 0.13 mm Total Indicator Reading.

SIZE	O-RING DIMENSIONS					A		B		G		H	
	ID	TOL	W	$\begin{array}{cc} \text { TOL MEAN } \\ & \text { OD } \\ & \text { (REF) } \end{array}$		INTERNAL PRESSURE		EXTERNAL PRESSURE		GROOVE WIDTH		GLAND DEPTH	
		(\pm)				GLAND DIAMETER	$\begin{gathered} \mathrm{TOL} \\ (+.00) \end{gathered}$	GLAND DIAMETER	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	MIN	MAX	MIN	MAX
-1	0.74	± 0.10	1.02	± 0.08	2.77								
-2	1.07	± 0.10	1.27	± 0.08	3.61								
-3	1.42	± 0.10	1.52	± 0.08	4.47								
-4	1.78	± 0.10	1.78	± 0.08	5.33			1.78	+0.13	3.18	3.43	1.24	1.40
-5	2.57	± 0.13	1.78	± 0.08	6.12			2.57	+0.13	3.18	3.43	1.24	1.40
-6	2.90	± 0.13	1.78	± 0.08	6.45			2.90	+0.13	3.18	3.43	1.24	1.40
-7	3.68	± 0.13	1.78	± 0.08	7.24			3.68	+0.13	3.18	3.43	1.24	1.40
-8	4.47	± 0.13	1.78	± 0.08	8.03			4.47	+0.13	3.18	3.43	1.24	1.40
-9	5.28	± 0.13	1.78	± 0.08	8.84			5.28	+0.13	3.18	3.43	1.24	1.40
-10	6.07	± 0.13	1.78	± 0.08	9.63			6.07	+0.13	3.18	3.43	1.24	1.40
-11	7.65	± 0.13	1.78	± 0.08	11.20	11.20	-0.13	7.65	+0.13	3.18	3.43	1.24	1.40
-12	9.25	± 0.13	1.78	± 0.08	12.80	12.80	-0.13	9.25	+0.13	3.18	3.43	1.24	1.40
-13	10.82	± 0.13	1.78	± 0.08	14.38	14.38	-0.13	10.82	+0.13	3.18	3.43	1.24	1.40
-14	12.42	± 0.13	1.78	± 0.08	15.98	15.98	-0.13	12.42	+0.13	3.18	3.43	1.24	1.40

"Dynamic seals exist where there is relative motion between the mating surfaces being sealed."

In contrast to static seals, dynamic seals exist where there is relative motion between the mating surfaces being sealed. In most instances, the dimensional variations inherent in dynamic seals make them more difficult to design and more expensive to construct than static seals. Nevertheless, dynamic O-ring seals are indispensable to a wide variety of applications. Here's a closer look at the major types of dynamic seals:

RECIPROCATING SEALS

Reciprocating seals involve relative reciprocating motion along the shaft axis between the inner and outer elements. In reciprocating seal applications, the O-ring slides or rocks back and forth within its gland with the reciprocating motion.
Reciprocating seals are most often seen in cylinders and linear actuators. Some examples of reciprocating O-ring seals are shown in Figures 113 and 114. Gland design measurements for industrial reciprocating 0-ring seals can be found in Table 48. Gland dimensions can be found in Table 49.

Figure 113 and 114: Reciprocating 0-Ring Seals

FLOATING PNEUMATIC PISTON SEALS

Floating pneumatic piston seals are reciprocating in nature, but the way in which the seals are effected is unique. Normal reciprocating designs rely on the 0-ring being stretched over a piston and then squeezed radially (on the inside diameter, or I.D., and the outside diameter, or O.D.)
In floating 0-ring designs, however, there is no radial squeeze on the seal's crosssection. The O-ring's O.D. is larger than the cylinder bore diameter. Peripheral squeeze is applied to the O.D. as the O-ring is installed into the bore. Incoming air pressure forces the O-ring against the groove wall, and a seal is effected as shown in Figure 115. Floating designs offer a number of advantages, including greatly reduced breakout friction and longer seal life. Floating pneumatic piston seals are suited for applications in which the air pressure does not exceed 200 psi (or in hydraulic designs where a small amount of leakage is permissible). Floating O-rings are NOT suitable as rod seals. Gland design measurements for floating pneumatic piston O-ring seals can be found in Table 50. Gland dimensions can be found in Table 51.

Figure 115: Floating Pneumatic Piston Seal

ROTARY SEALS

Rotary seals involve motion between a shaft and a housing. Typical rotary seals include motor shafts and wheels on a fixed axle. Installation of a rotary O-ring seal is shown in Fiqure 116. NewDealSeals recommends lip type shaft seals for most rotary applications There are applications, however, where an O-ring will provide an effective rotary seal. O-ring seals are NOT recommended for rotary applications under the following conditions:

- Pressures exceeding 800 psi.
- Temperatures lower than $-40^{\circ} \mathrm{C}$ or higher than $107^{\circ} \mathrm{C}$
- Surface speeds exceeding 180 meter per minute.

When an elastomer is stretched and heated, it will contract. This is called the GoughJoule effect. This is an important design consideration in a rotary application because if an 0-ring is installed in a stretched condition, frictional heat will cause the 0-ring to contract onto the shaft. This may cause the O-ring to seize the rotating shaft so that the dynamic interface becomes the 0-ring O.D. and the groove I.D. The contraction will also cause more frictional heat, further exacerbating the situation and causing premature failure of the 0 -ring.
We designed our rotary 0-ring seals so that the free 0-ring I.D. is larger than the shaft onto which it fits. The gland I.D. is smaller than the free 0-ring O.D. so that when it is placed into the gland, the 0-ring is peripherally squeezed, and the I.D. is reduced so that a positive interference exists between the O-ring I.D. and the shaft. Because the O-ring is not in a stretched condition, it will not build up heat, seize the shaft, and rotate in the groove.
Rotary seals (such as the one shown in Figure 117) do not dissipate heat as well as reciprocating seals do, so provisions must be made to keep heat build-up to a minimum.

- The housing I.D. should not be used as a bearing surface.
- Bearings should be provided to ensure that the shaft runout does not exceed 0.05 mm TIR.
- The O-ring groove should be located away from the bearing and close to the lubricating fluid.
- The housing length should be 8 to 10 times the 0 -ring cross-section to provide for better heat transfer.

To prevent extrusion of the 0-ring, we recommend the clearance gap (extrusion gap) to be no more than 0.13 mm per side. If pressures greater than 800 psi are encountered, it is recommended that an 80 durometer 0 -ring be used.
The minimum hardness for the section of shaft that comes into contact with the 0 -rings is Rockwell C30. To prevent excessive wear, scratches, nicks, and handling damage, a hardness of Rockwell 45 is recommended. A shaft finish of 0.25-0.5 $\mu \mathrm{m}$ is recommended, and plunge grinding with no machine lead is the preferred finishing method. The shaft ends should be chamfered with a $15 / 30^{\circ}$ chamfer to prevent installation damage
Gland design measurements for rotary 0-ring seals can be found in Table 52. Gland dimensions can be found in Table 53.

O-ring in free state relative to shaft \& housing

O-ring installed in housing without shaft installed

O-ring installed in housing with shaft installed

Figure 116: Installation of a Rotary Seal

Figure 117: Rotary O-Ring Seal

DYNAMIC SEALS

\longrightarrow

Figure 118: Oscillating 0-Ring Seal

OSCILLATING SEALS

Oscillating seals are commonly used in faucet valves. In oscillating applications, the shaft or housing rotates back and forth through a limited number of turns around the axis of the shaft. An oscillating 0-ring seal is shown in Figure 118.
Because the surface speed in oscillating seals is so slow, reciprocating design charts are used.

The gland dimensions for the above seals can be calculated with our online 0-Ring Calculator.

Figure 119: Reciprocating Seals (Piston \& Rod)

Break corners 5° Maximum

NOTES:

1. Because of the tendency of the 0 -ring to spiral in reciprocating applications, only the listed sizes are recommended.
2. Concentricity is a Total Indicator Reading between the piston O.D. and the piston groove diameter

	CROSS-SECTION	H GLAND DEPTH	SQUEEZE		EXTRUSION GAPMAX	GROOVE WIDTH			$\begin{gathered} \text { R } \\ \text { GROOVE } \\ \text { RADIUS } \end{gathered}$	CONCENTRICITY(2)
$\begin{gathered} \text { AS568A } \\ \text { O-RING SIZE(1) } \end{gathered}$		MIN-MAX	ACTUAL MIN-MAX	\% MIN-MAX		NO BACK-UPS MIN-MAX	$\begin{aligned} & 1 \text { BACK-UP } \\ & \text { MIN-MAX } \end{aligned}$	2 BACK-UPS MIN-MAX	MIN-MAX	
-004 thru -050	1.78 ± 0.08	1.40-1.45	0.25-0.46	15-25	0.13	2.36-2.49	3.51-3.63	5.21-5.33	0.13-0.38	0.05
-102 thru -178	2.62 ± 0.08	2.24-2.29	0.25-0.46	43009	0.13	3.56-3.68	4.34-4.47	6.05-6.17	0.13-0.38	0.05
-102 thru -284	3.53 ± 0.10	3.07-3.12	0.30-0.56	42614	0.15	4.75-4.88	5.28-5.41	6.99-7.11	0.25-0.64	0.08
-309 thru -395	5.33 ± 0.13	4.70-4.78	0.43-0.76	41852	0.15	7.14-7.26	7.90-8.03	10.41-10.54	0.51-0.89	0.10
-425 thru -475	6.99 ± 0.15	6.02-6.10	0.74-1.12	42675	0.18	9.53-9.65	10.36-10.49	13.67-13.79	0.51-0.89	0.13

DYNAMIC SEALS

NOTES:

1. Because of the tendency of the 0-ring to spiral in reciprocating applications, only the listed sizes are recommended.
2. Sizes marked with an asterisk (*) require significant stretch. Use of a material with increased elongation or a split piston may be advisable.
3. Design for no back-up rings; over 1500 psi, consult Table 48 .

Figure 121: Reciprocating Seals (Piston and Rod)

$\begin{gathered} \text { AS568A } \\ \text { O-RING SIZE(1) } \end{gathered}$	ID	O-RING DIMENSIONS				A CYLINDER BORE		```B PISTON OD(2)```		C PISTON GROOVE		$\begin{gathered} \mathrm{D} \\ \mathrm{ROD} \end{gathered}$		E THROAT		HOUSING GROOVE		$\begin{gathered} \text { GROOVE } \\ \text { WIDTH(3) } \end{gathered}$	
		$\begin{aligned} & \text { TOL } \\ & (\pm) \end{aligned}$	W	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	MEAN OD (REF)	DIA	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	DIA	$\begin{array}{\|c} \mathrm{TOL} \\ (+.00) \end{array}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{aligned} & \text { TOL } \\ & (-.00) \end{aligned}$	DIA	$\begin{aligned} & \text { TOL } \\ & (-., 00) \end{aligned}$		$\begin{gathered} \mathrm{TOL} \\ (-.00) \end{gathered}$
-6	2.90	± 0.13	1.78	± 0.08	6.45	6.35	+0.05	6.30*	-0.03	3.56	-0.05	3.18	-0.05	3.23	+0.03	5.97	+0.05	2.36	+0.13
-7	3.68	± 0.13	1.78	± 0.08	7.24	7.14	+0.05	7.09*	-0.03	4.34	-0.05	3.96	-0.05	4.01	+0.03	6.76	+0.05	2.36	+0.13
-8	4.47	± 0.13	1.78	± 0.08	8.03	7.92	+0.05	7.87*	-0.03	5.13	-0.05	4.75	-0.05	4.80	+0.03	7.54	+0.05	2.36	+0.13
-9	5.28	± 0.13	1.78	± 0.08	8.84	8.71	+0.05	8.66*	-0.03	5.92	-0.05	5.54	-0.05	5.59	+0.03	8.33	+0.05	2.36	+0.13
-10	6.07	± 0.13	1.78	± 0.08	9.63	9.53	+0.05	9.47*	-0.03	6.73	-0.05	6.35	-0.05	6.40	+0.03	9.14	+0.05	2.36	+0.13
-11	7.65	± 0.13	1.78	± 0.08	11.20	11.10	+0.05	11.05*	-0.03	8.31	-0.05	7.92	-0.05	7.98	+0.03	10.72	+0.05	2.36	+0.13
-12	9.25	± 0.13	1.78	± 0.08	12.80	12.70	+0.05	12.65*	-0.03	9.91	-0.05	9.53	-0.05	9.58	+0.03	12.32	+0.05	2.36	+0.13
-104	2.84	± 0.13	2.62	± 0.08	8.08	7.87	+0.05	7.82*	-0.03	3.40	-0.05	3.18	-0.05	3.23	+0.03	7.65	+0.05	3.56	+0.13
-105	3.63	± 0.13	2.62	± 0.08	8.86	8.69	+0.05	8.64*	-0.03	4.22	-0.05	3.96	-0.05	4.01	+0.03	8.43	+0.05	3.56	+0.13
-106	4.42	± 0.13	2.62	± 0.08	9.65	9.50	+0.05	9.45*	-0.03	5.03	-0.05	4.75	-0.05	4.80	+0.03	9.22	+0.05	3.56	+0.13
-107	5.23	± 0.13	2.62	± 0.08	10.46	10.29	+0.05	10.24*	-0.03	5.82	-0.05	5.56	-0.05	5.61	+0.03	10.03	+0.05	3.56	+0.13
-108	6.02	± 0.13	2.62	± 0.08	11.25	11.10	+0.05	11.05*	-0.03	6.63	-0.05	6.35	-0.05	6.40	+0.03	10.82	+0.05	3.56	+0.13
-109	7.59	± 0.13	2.62	± 0.08	12.83	12.70	+0.05	12.65*	-0.03	8.23	-0.05	7.92	-0.05	7.98	+0.03	12.40	+0.05	3.56	+0.13
-110	9.19	± 0.13	2.62	± 0.08	14.43	14.27	+0.05	14.22*	-0.03	9.80	-0.05	9.53	-0.05	9.58	+0.03	14.00	+0.05	3.56	+0.13
-111	10.77	± 0.13	2.62	± 0.08	16.00	15.88	+0.05	15.82*	-0.03	11.40	-0.05	11.10	-0.05	11.15	+0.03	15.57	+0.05	3.56	+0.13
-112	12.37	± 0.13	2.62	± 0.08	17.60	17.45	+0.05	17.40*	-0.03	12.98	-0.05	12.70	-0.05	12.75	+0.03	17.17	+0.05	3.56	+0.13

NOTES:

1. Because of the tendency of the 0 -ring to spiral in reciprocating applications, only the listed sizes are recommended.
2. Sizes marked with an asterisk (*) require significant stretch. Use of a material with increased elongation or a split piston may be advisable.
3. Design for no back-up rings; over 1500 psi, consult Table 48.

Figure 121: Reciprocating Seals (Piston and Rod)

$\begin{gathered} \text { AS568A } \\ \text { O-RING SIZE(1) } \end{gathered}$	ID	O-RING DIMENSIONS				A CYLINDER BORE		$\begin{gathered} \text { B } \\ \text { PISTON OD(2) } \end{gathered}$		C PISTON GROOVE		$\begin{gathered} \mathrm{D} \\ \mathrm{ROD} \end{gathered}$		E THROAT		F HOUSING GROOVE		GROOVE WIDTH(3)	
		$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	W	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	MEAN OD (REF)	DIA	$\begin{gathered} \mathrm{TOL} \\ (-.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \mathrm{TOL} \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \mathrm{TOL} \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	DIA	$\begin{aligned} & \text { TOL } \\ & (-.00) \end{aligned}$		$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$
-113	13.94	± 0.18	2.62	± 0.08	19.18	19.05	+0.05	19.00*	-0.03	14.58	-0.05	14.30	-0.05	14.35	+0.03	18.77	+0.05	3.56	+0.13
-114	15.54	± 0.23	2.62	± 0.08	20.78	20.62	+0.05	20.57	-0.03	16.15	-0.05	15.88	-0.05	15.93	+0.03	20.35	+0.05	3.56	+0.13
-115	17.12	± 0.23	2.62	± 0.08	22.35	22.23	+0.05	22.17	-0.03	17.75	-0.05	17.48	-0.05	17.53	+0.03	21.95	+0.05	3.56	+0.13
-116	18.72	± 0.23	2.62	± 0.08	23.95	23.80	+0.05	23.75	-0.03	19.33	-0.05	19.05	-0.05	19.10	+0.03	23.52	+0.05	3.56	+0.13
-201	4.34	± 0.13	3.53	± 0.10	11.40	11.10	+0.05	11.02*	-0.03	4.95	-0.05	4.75	-0.05	4.83	+0.03	10.90	+0.05	4.75	+0.13
-202	5.94	± 0.13	3.53	± 0.10	13.00	12.70	+0.05	12.62*	-0.03	6.55	-0.05	6.35	-0.05	6.43	+0.03	12.50	+0.05	4.75	+0.13
-203	7.52	± 0.13	3.53	± 0.10	14.58	14.27	+0.05	14.20*	-0.03	8.13	-0.05	7.92	-0.05	8.00	+0.03	14.07	+0.05	4.75	+0.13
-204	9.12	± 0.13	3.53	± 0.10	16.18	15.88	+0.05	15.80	-0.03	9.73	-0.05	9.53	-0.05	9.60	+0.03	15.67	+0.05	4.75	+0.13
-205	10.69	± 0.13	3.53	± 0.10	17.75	17.45	+0.05	17.37	-0.03	11.30	-0.05	11.10	-0.05	11.18	+0.03	17.25	+0.05	4.75	+0.13
-206	12.29	± 0.13	3.53	± 0.10	19.35	19.05	+0.05	18.97	-0.03	12.90	-0.05	12.70	-0.05	12.78	+0.03	18.85	+0.05	4.75	+0.13
-207	13.87	± 0.18	3.53	± 0.10	20.93	20.62	+0.05	20.55	-0.03	14.48	-0.05	14.27	-0.05	14.35	+0.03	20.42	+0.05	4.75	+0.13
-208	15.47	± 0.23	3.53	± 0.10	22.53	22.23	+0.05	22.15	-0.03	16.08	-0.05	15.88	-0.05	15.95	+0.03	22.02	+0.05	4.75	+0.13
-209	17.04	± 0.23	3.53	± 0.10	24.10	23.80	+0.05	23.72	-0.03	17.65	-0.05	17.45	-0.05	17.53	+0.03	23.60	+0.05	4.75	+0.13
-210	18.64	± 0.25	3.53	± 0.10	25.70	25.40	+0.05	25.32	-0.03	19.25	-0.05	19.05	-0.05	19.13	+0.03	25.20	+0.05	4.75	+0.13
-211	20.22	± 0.25	3.53	± 0.10	27.28	26.97	+0.05	26.90	-0.03	20.83	-0.05	20.62	-0.05	20.70	+0.03	26.77	+0.05	4.75	+0.13
-212	21.82	± 0.25	3.53	± 0.10	28.88	28.58	+0.05	28.50	-0.03	22.43	-0.05	22.23	-0.05	22.30	+0.03	28.37	+0.05	4.75	+0.13

DYNAMIC SEALS

AS568A	O-RING DIMENSIONS					A		B		C		D		E		F		G	
$\begin{aligned} & \text { O-RING } \\ & \text { SIZE(1) } \end{aligned}$						CYLINDER BORE		PISTON OD(2)		PISTON GROOVE		ROD		THROAT		HOUSING GROOVE		GROOVE WIDTH(3)	
	ID	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	W	TOL MEAN OD (\pm) (REF)		DIA	$\begin{gathered} \text { TOL } \\ (-., 00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$		$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$
-213	23.39	± 0.25	3.53	± 0.10	30.45	30.15	+0.05	30.07	-0.03	24.00	-0.05	23.80	-0.05	23.88	+0.03	29.95	+0.05	4.75	+0.13
-214	24.99	± 0.25	3.53	± 0.10	32.05	31.75	+0.05	31.67	-0.03	25.60	-0.05	25.40	-0.05	25.48	+0.03	31.55	+0.05	4.75	+0.13
-215	26.57	± 0.25	3.53	± 0.10	33.63	33.32	+0.05	33.25	-0.03	27.18	-0.05	26.97	-0.05	27.05	+0.03	33.12	+0.05	4.75	+0.13
-216	28.17	± 0.30	3.53	± 0.10	35.23	34.93	+0.05	34.85	-0.03	28.78	-0.05	28.58	-0.05	28.65	+0.03	34.72	+0.05	4.75	+0.13
-217	29.74	± 0.30	3.53	± 0.10	36.80	36.50	+0.05	36.42	-0.03	30.35	-0.05	30.15	-0.05	30.23	+0.03	36.30	+0.05	4.75	+0.13
-218	31.34	± 0.30	3.53	± 0.10	38.40	38.10	+0.05	38.02	-0.03	31.95	-0.05	31.75	-0.05	31.83	+0.03	37.90	+0.05	4.75	+0.13
-219	32.92	± 0.30	3.53	± 0.10	39.98	39.67	+0.05	39.60	-0.03	33.53	-0.05	33.32	-0.05	33.40	+0.03	39.47	+0.05	4.75	+0.13
-220	34.52	± 0.30	3.53	± 0.10	41.58	41.28	+0.05	41.20	-0.03	35.13	-0.05	34.93	-0.05	35.00	+0.03	41.07	+0.05	4.75	+0.13
-221	36.09	± 0.30	3.53	± 0.10	43.15	42.85	+0.05	42.77	-0.03	36.70	-0.05	36.50	-0.05	36.58	+0.03	42.65	+0.05	4.75	+0.13
-222	37.69	± 0.38	3.53	± 0.10	44.75	44.45	+0.05	44.37	-0.03	38.30	-0.05	38.10	-0.05	38.18	+0.03	44.25	+0.05	4.75	+0.13
-309	10.46	± 0.13	5.33	± 0.13	21.13	20.62	+0.05	20.55*	-0.03	11.23	-0.10	11.10	-0.05	11.18	+0.03	20.50	+0.10	7.14	+0.13
-310	12.07	± 0.13	5.33	± 0.13	22.73	22.23	+0.05	22.15*	-0.03	12.83	-0.10	12.70	-0.05	12.78	+0.03	22.10	+0.10	7.14	+0.13
-311	13.64	± 0.18	5.33	± 0.13	24.31	23.80	+0.05	23.72*	-0.03	14.40	-0.10	14.27	-0.05	14.35	+0.03	23.67	+0.10	7.14	+0.13
-312	15.24	± 0.23	5.33	± 0.13	25.91	25.40	+0.05	25.32	-0.03	16.00	-0.10	15.88	-0.05	15.95	+0.03	25.27	+0.10	7.14	+0.13
-313	16.81	± 0.23	5.33	± 0.13	27.48	26.97	+0.05	26.90	-0.03	17.58	-0.10	17.45	-0.05	17.53	+0.03	26.85	+0.10	7.14	+0.13
-314	18.42	± 0.25	5.33	± 0.13	29.08	28.58	+0.05	28.50	-0.03	19.18	-0.10	19.05	-0.05	19.13	+0.03	28.45	+0.10	7.14	+0.13
-315	19.99	± 0.25	5.33	± 0.13	30.66	30.15	+0.05	30.07	-0.03	20.75	-0.10	20.62	-0.05	20.70	+0.03	30.02	+0.10	7.14	+0.13
-316	21.59	± 0.25	5.33	± 0.13	32.26	31.75	+0.05	31.67	-0.03	22.35	-0.10	22.23	-0.05	22.30	+0.03	31.62	+0.10	7.14	+0.13
-317	23.16	± 0.25	5.33	± 0.13	33.83	33.32	+0.05	33.25	-0.03	23.93	-0.10	23.80	-0.05	23.88	+0.03	33.20	+0.10	7.14	+0.13
-318	24.77	± 0.25	5.33	± 0.13	35.43	34.93	+0.05	34.85	-0.03	25.53	-0.10	25.40	-0.05	25.48	+0.03	34.80	+0.10	7.14	+0.13
-319	26.34	± 0.25	5.33	± 0.13	37.01	36.50	+0.05	36.42	-0.03	27.10	-0.10	26.97	-0.05	27.05	+0.03	36.37	+0.10	7.14	+0.13
-320	27.94	± 0.30	5.33	± 0.13	38.61	38.10	+0.05	38.02	-0.03	28.70	-0.10	28.58	-0.05	28.65	+0.03	37.97	+0.10	7.14	+0.13

Figure 121: Reciprocating Seals (Piston and Rod)

NOTES:

1. Because of the tendency of the 0-ring to spiral in reciprocating applications, only the listed sizes are recommended.
2. Sizes marked with an asterisk (*) require significant stretch. Use of a material with increased elongation or a split piston may be advisable.
3. Design for no back-up rings; over 1500 psi, consult Table 48.
_

AS568A	O-RING DIMENSIONS					A CYLINDER BORE		B		C		D		E		F		G			
$\begin{aligned} & \text { O-RING } \\ & \text { SIZE(1) } \end{aligned}$						PISTO	OD(2)	PISTO	ROOVE					HOUSI	GROOVE	GROOVE WIDTH(3)					
	ID	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	W	TOL MEAN OD (\pm) (REF)				DIA	$\begin{aligned} & \text { TOL } \\ & (-.00) \end{aligned}$	DIA	$\begin{gathered} \mathrm{TOL} \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$		$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$
-321	29.51	± 0.30	5.33	± 0.13	40.18	39.67	+0.05	39.60	-0.03	30.28	-0.10	30.15	-0.05	30.23	+0.03	39.55	+0.10	7.14	+0.13		
-322	31.12	± 0.30	5.33	± 0.13	41.78	41.28	+0.05	41.20	-0.03	31.88	-0.10	31.75	-0.05	31.83	+0.03	41.15	+0.10	7.14	+0.13		
-323	32.69	± 0.30	5.33	± 0.13	43.36	42.85	+0.05	42.77	-0.03	33.45	-0.10	33.32	-0.05	33.40	+0.03	42.72	+0.10	7.14	+0.13		
-324	34.29	± 0.30	5.33	± 0.13	44.96	44.45	+0.05	44.37	-0.03	35.05	-0.10	34.93	-0.05	35.00	+0.03	44.32	+0.10	7.14	+0.13		
-325	37.47	± 0.38	5.33	± 0.13	48.13	47.63	+0.05	47.55	-0.03	38.23	-0.10	38.10	-0.05	38.18	+0.03	47.50	+0.10	7.14	+0.13		
-326	40.64	± 0.38	5.33	± 0.13	51.31	50.80	+0.05	50.72	-0.03	41.40	-0.10	41.28	-0.05	41.35	+0.03	50.67	+0.10	7.14	+0.13		
-327	43.82	± 0.38	5.33	± 0.13	54.48	53.98	+0.05	53.90	-0.03	44.58	-0.10	44.45	-0.05	44.53	+0.03	53.85	+0.10	7.14	+0.13		
-328	46.99	± 0.38	5.33	± 0.13	57.66	57.15	+0.05	57.07	-0.03	47.75	-0.10	47.63	-0.05	47.70	+0.03	57.02	+0.10	7.14	+0.13		
-329	50.17	± 0.46	5.33	± 0.13	60.83	60.33	+0.05	60.25	-0.03	50.93	-0.10	50.80	-0.05	50.88	+0.03	60.20	+0.10	7.14	+0.13		
-330	53.34	± 0.46	5.33	± 0.13	64.01	63.50	+0.05	63.42	-0.03	54.10	-0.10	53.98	-0.05	54.05	+0.03	63.37	+0.10	7.14	+0.13		
-331	56.52	± 0.46	5.33	± 0.13	67.18	66.68	+0.05	66.60	-0.03	57.28	-0.10	57.15	-0.05	57.23	+0.03	66.55	+0.10	7.14	+0.13		

DYNAMIC SEALS

AS568A	O-RING DIMENSIONS					A		B		c		D		E		F		G	
O-RING SIZE(1)						CYLINDE	ER BORE	PISTON	OD(2)	PISTON	GROOVE	ROD THROAT				HOUSING GROOVE		GROOVE WIDTH(3)	
	ID	$\begin{aligned} & \text { TOL } \\ & (\pm) \end{aligned}$	W	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	MEAN OD (REF)	DIA	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{aligned} & \text { TOL } \\ & (-.00) \end{aligned}$	DIA	$\begin{array}{\|c} \text { TOL } \\ (-.00) \end{array}$		$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$
-332	59.69	± 0.46	5.33	± 0.13	70.36	69.85	+0.05	69.77	-0.03	60.45	-0.10	60.33	-0.05	60.40	+0.03	69.72	+0.10	7.14	+0.13
-333	62.87	± 0.51	5.33	± 0.13	73.53	73.03	+0.05	72.95	-0.03	63.63	-0.10	63.50	-0.05	63.58	+0.03	72.90	+0.10	7.14	+0.13
-334	66.04	± 0.51	5.33	± 0.13	76.71	76.20	+0.05	76.12	-0.03	66.80	-0.10	66.68	-0.05	66.75	+0.03	76.07	+0.10	7.14	+0.13
-335	69.22	± 0.51	5.33	± 0.13	79.88	79.38	+0.05	79.30	-0.03	69.98	-0.10	69.85	-0.05	69.93	+0.03	79.25	+0.10	7.14	+0.13
-336	72.39	± 0.51	5.33	± 0.13	83.06	82.55	+0.05	82.47	-0.03	73.15	-0.10	73.03	-0.05	73.10	+0.03	82.42	+0.10	7.14	+0.13
-337	75.57	± 0.61	5.33	± 0.13	86.23	85.73	+0.05	85.65	-0.03	76.33	-0.10	76.20	-0.05	76.28	+0.03	85.60	+0.10	7.14	+0.13
-338	78.74	± 0.61	5.33	± 0.13	89.41	88.90	+0.05	88.82	-0.03	79.50	-0.10	79.38	-0.05	79.45	+0.03	88.77	+0.10	7.14	+0.13
-339	81.92	± 0.61	5.33	± 0.13	92.58	92.08	+0.05	92.00	-0.03	82.68	-0.10	82.55	-0.05	82.63	+0.03	91.95	+0.10	7.14	+0.13
-340	85.09	± 0.61	5.33	± 0.13	95.76	95.25	+0.05	95.17	-0.03	85.85	-0.10	85.73	-0.05	85.80	+0.03	95.12	+0.10	7.14	+0.13
-341	88.27	± 0.61	5.33	± 0.13	98.93	98.43	+0.05	98.35	-0.03	89.03	-0.10	88.90	-0.05	88.98	+0.03	98.30	+0.10	7.14	+0.13
-342	91.44	± 0.71	5.33	± 0.13	102.11	101.60	+0.05	101.52	-0.03	92.20	-0.10	92.08	-0.05	92.15	+0.03	101.47	+0.10	7.14	+0.13
-343	94.62	± 0.71	5.33	± 0.13	105.28	104.78	+0.05	104.70	-0.03	95.38	-0.10	95.25	-0.05	95.33	+0.03	104.65	+0.10	7.14	+0.13
-344	97.79	± 0.71	5.33	± 0.13	108.46	107.95	+0.05	107.87	-0.03	98.55	-0.10	98.43	-0.05	98.50	+0.03	107.82	+0.10	7.14	+0.13
-345	100.97	± 0.71	5.33	± 0.13	111.63	111.13	+0.05	111.05	-0.03	101.73	-0.10	101.60	-0.05	101.68	+0.03	111.00	+0.10	7.14	+0.13
-346	104.14	± 0.71	5.33	± 0.13	114.81	114.30	+0.05	114.22	-0.03	104.90	-0.10	104.78	-0.05	104.85	+0.03	114.17	+0.10	7.14	+0.13
-347	107.32	± 0.76	5.33	± 0.13	117.98	117.48	+0.05	117.40	-0.03	108.08	-0.10	107.95	-0.05	108.03	+0.03	117.35	+0.10	7.14	$+0.13$

Figure 121: Reciprocating Seals (Piston and Rod)

AS568A	O-RING DIMENSIONS					A		B		C		D		E		F			
O-RING SIZE(1)						CYLIND	BORE	PISTO	OD(2)				OD		OAT		SING OVE	$\begin{aligned} & \text { GROOVE } \\ & \text { WIDTH(3) } \end{aligned}$	
	ID	$\begin{aligned} & \text { TOL } \\ & (\pm) \end{aligned}$	W	TOL MEAN OD (\pm) (REF)		DIA	$\begin{gathered} \mathrm{TOL} \\ (-.00) \end{gathered}$	DIA	$\begin{gathered} \mathrm{TOL} \\ (+.00) \end{gathered}$	DIA	$\left\lvert\, \begin{gathered} \text { TOL } \\ (+.00) \end{gathered}\right.$	DIA	$\begin{gathered} \mathrm{TOL} \\ (+.00) \end{gathered}$	DIA	$\begin{aligned} & \text { TOL } \\ & (-.00) \end{aligned}$	DIA	$\begin{gathered} \mathrm{TOL} \\ (-.00) \end{gathered}$		$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$
-348	110.49	± 0.76	5.33	± 0.13	121.16	120.65	+0.05	120.57	-0.03	111.25	-0.10	111.13	-0.05	111.20	+0.03	120.52	+0.10	7.14	+0.13
-349	113.67	± 0.76	5.33	± 0.13	124.33	123.83	+0.05	123.75	-0.03	114.43	-0.10	114.30	-0.05	114.38	+0.03	123.70	+0.10	7.14	+0.13
-425	113.67	± 0.84	6.99	± 0.15	127.64	127.00	+0.05	126.90	-0.03	114.96	-0.10	114.30	-0.05	114.40	+0.03	126.34	+0.10	9.53	+0.13
-426	116.84	± 0.84	6.99	± 0.15	130.81	130.18	+0.05	130.07	-0.03	118.14	-0.10	117.48	-0.05	117.58	+0.03	129.51	+0.10	9.53	+0.13
-427	120.02	± 0.84	6.99	± 0.15	133.99	133.35	+0.05	133.25	-0.03	121.31	-0.10	120.65	-0.05	120.75	+0.03	132.69	+0.10	9.53	+0.13
-428	123.19	± 0.84	6.99	± 0.15	137.16	136.53	+0.05	136.42	-0.03	124.49	-0.10	123.83	-0.05	123.93	+0.03	135.86	+0.10	9.53	+0.13
-429	126.37	± 0.94	6.99	± 0.15	140.34	139.70	+0.05	139.60	-0.03	127.66	-0.10	127.00	-0.05	127.10	+0.03	139.04	+0.10	9.53	+0.13
-430	129.54	± 0.94	6.99	± 0.15	143.51	142.88	+0.05	142.77	-0.03	130.84	-0.10	130.18	-0.05	130.28	+0.03	142.21	+0.10	9.53	+0.13
-431	132.72	± 0.94	6.99	± 0.15	146.69	146.05	+0.05	145.95	-0.03	134.01	-0.10	133.35	-0.05	57.25	+0.03	145.39	+0.10	9.53	+0.13
-432	135.89	± 0.94	6.99	± 0.15	149.86	149.23	+0.05	149.12	-0.03	137.19	-0.10	136.53	-0.05	136.63	+0.03	148.56	+0.10	9.53	+0.13
-433	139.07	± 0.94	6.99	± 0.15	153.04	152.40	+0.05	152.30	-0.03	140.36	-0.10	139.70	-0.05	139.80	+0.03	151.74	+0.10	9.53	+0.13
-434	142.24	± 0.94	6.99	± 0.15	156.21	155.58	+0.05	155.47	-0.03	143.54	-0.10	142.88	-0.05	142.98	+0.03	154.91	+0.10	9.53	+0.13
-435	145.42	± 0.94	6.99	± 0.15	159.39	158.75	+0.05	158.65	-0.03	146.71	-0.10	146.05	-0.05	146.15	+0.03	158.09	+0.10	9.53	+0.13

DYNAMICSEALS

	ID	O-RING DIMENSIONS				A		B				D		E		F		G	
AS568AO-RING SIZE(1)						CYLINDER BORE		PISTON OD(2)		$\begin{aligned} & \text { PISTON } \\ & \text { GROOVE } \end{aligned}$		ROD		THROAT		HOUSING GROOVE		$\begin{aligned} & \text { GROOVE } \\ & \text { WIDTH(3) } \end{aligned}$	
		$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	W	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	MEAN OD (REF)	DIA	$\begin{array}{\|c} \mathrm{TOL} \\ (-.00) \end{array}$	DIA	$\begin{gathered} \mathrm{TOL} \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \mathrm{TOL} \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \mathrm{TOL} \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	DIA	$\begin{gathered} \mathrm{TOL} \\ (-.00) \end{gathered}$		$\begin{gathered} \mathrm{TOL} \\ (-.00) \end{gathered}$
-436	148.59	± 0.94	6.99	± 0.15	162.56	161.93	+0.05	161.82	-0.03	149.89	-0.10	149.23	-0.05	149.33	+0.03	161.26	+0.10	9.53	+0.13
-437	151.77	± 0.94	6.99	± 0.15	165.74	165.10	+0.05	165.00	-0.03	153.06	-0.10	152.40	-0.05	152.50	+0.03	164.44	+0.10	9.53	+0.13
-438	158.12	± 1.02	6.99	± 0.15	172.09	171.45	+0.05	171.35	-0.03	159.41	-0.10	158.75	-0.05	158.85	+0.03	170.79	+0.10	9.53	+0.13
-439	164.47	± 1.02	6.99	± 0.15	178.44	177.80	+0.05	177.70	-0.03	165.76	-0.10	165.10	-0.05	165.20	+0.03	177.14	+0.10	9.53	+0.13
-440	170.82	± 1.02	6.99	± 0.15	184.79	184.15	+0.05	184.05	-0.03	172.11	-0.10	171.45	-0.05	171.55	+0.03	183.49	+0.10	9.53	+0.13
-441	177.17	± 1.02	6.99	± 0.15	191.14	190.50	+0.05	190.40	-0.03	178.46	-0.10	177.80	-0.05	177.90	+0.03	189.84	+0.10	9.53	+0.13
-442	183.52	± 1.14	6.99	± 0.15	197.49	196.85	+0.05	196.75	-0.03	184.81	-0.10	184.15	-0.05	184.25	+0.03	196.19	+0.10	9.53	+0.13
-443	189.87	± 1.14	6.99	± 0.15	203.84	203.20	+0.05	203.10	-0.03	191.16	-0.10	190.50	-0.05	190.60	+0.03	202.54	+0.10	9.53	+0.13
-444	196.22	± 1.14	6.99	± 0.15	210.19	209.55	+0.05	209.45	-0.03	197.51	-0.10	196.85	-0.05	196.95	+0.03	208.89	+0.10	9.53	+0.13
-445	202.57	± 1.14	6.99	± 0.15	216.54	215.90	+0.05	215.80	-0.03	203.86	-0.10	203.20	-0.05	203.30	+0.03	215.24	+0.10	9.53	+0.13
-446	215.27	± 1.40	6.99	± 0.15	229.24	228.60	+0.05	228.50	-0.03	216.56	-0.10	215.90	-0.05	216.00	+0.03	227.94	+0.10	9.53	+0.13
-447	227.97	± 1.40	6.99	± 0.15	241.94	241.30	+0.05	241.20	-0.03	229.26	-0.10	228.60	-0.05	228.70	+0.03	240.64	+0.10	9.53	+0.13
-448	240.67	± 1.40	6.99	± 0.15	254.64	254.00	+0.05	253.90	-0.03	241.96	-0.10	241.30	-0.05	241.40	+0.03	253.34	+0.10	9.53	+0.13
-449	253.37	± 1.40	6.99	± 0.15	267.34	266.70	+0.05	266.60	-0.03	254.66	-0.10	254.00	-0.05	254.10	+0.03	266.04	+0.10	9.53	+0.13
-450	266.07	± 1.52	6.99	± 0.15	280.04	279.40	+0.05	279.30	-0.03	267.36	-0.10	266.70	-0.05	266.80	+0.03	278.74	+0.10	9.53	+0.13
-451	278.77	± 1.52	6.99	± 0.15	292.74	292.10	+0.05	292.00	-0.03	280.06	-0.10	279.40	-0.05	279.50	+0.03	291.44	+0.10	9.53	+0.13
-452	291.47	± 1.52	6.99	± 0.15	305.44	304.80	+0.05	304.70	-0.03	292.76	-0.10	292.10	-0.05	292.20	+0.03	304.14	+0.10	9.53	+0.13
-453	304.17	± 1.52	6.99	± 0.15	318.14	317.50	+0.05	317.40	-0.03	305.46	-0.10	304.80	-0.05	304.90	+0.03	316.84	+0.10	9.53	+0.13
-454	316.87	± 1.52	6.99	± 0.15	330.84	330.20	+0.05	330.10	-0.03	318.16	-0.10	317.50	-0.05	317.60	+0.03	329.54	+0.10	9.53	+0.13
-455	329.57	± 1.52	6.99	± 0.15	343.54	330.20	+0.05	342.80	-0.03	330.86	-0.10	330.20	-0.05	330.30	+0.03	342.24	+0.10	9.53	+0.13
-456	342.27	± 1.78	6.99	± 0.15	356.24	355.60	+0.05	355.50	-0.03	343.56	-0.10	342.90	-0.05	343.00	+0.03	354.94	+0.10	9.53	+0.13
-457	354.97	± 1.78	6.99	± 0.15	368.94	368.30	+0.05	368.20	-0.03	356.26	-0.10	355.60	-0.05	355.70	+0.03	367.64	+0.10	9.53	+0.13
-458	367.67	± 1.78	6.99	± 0.15	381.64	381.00	+0.05	380.90	-0.03	368.96	-0.10	368.30	-0.05	368.40	+0.03	380.34	+0.10	9.53	+0.13
-459	380.37	± 1.78	6.99	± 0.15	394.34	393.70	+0.05	393.60	-0.03	381.66	-0.10	381.00	-0.05	381.10	+0.03	393.04	+0.10	9.53	+0.13
-460	393.07	± 1.78	6.99	± 0.15	407.04	406.40	+0.05	406.30	-0.03	394.36	-0.10	393.70	-0.05	393.80	+0.03	405.74	+0.10	9.53	+0.13

Figure 122: Floating Pneumatic Seal

Figure 123: Surface Finish a Shape Suggestions

NOTES:

1. Because of the tendency of the 0 -ring to spiral in floating applications, only the listed sizes are recommended.
2. Concentricity is a Total Indicator Reading between the piston OD and the piston groove diameter

$\begin{gathered} \text { A568A } \\ \text { O-RING SIZE(1) } \end{gathered}$	CROSS-SECTION	PERIPHERAL SQUEEZE	G GROOVE WIDTH MIN-MAX	```H GLAND DEPTH MIN-MAX```	EXTRUSION GAP MAX	R GROOVE RADIUS MIN-MAX	CONCENTRICITY(2)
-004 thru -050	1.78 ± 0.08	0.89-1.07	1.91-2.01	1.83-1.93	0.25	0.13-0.38	0.05
-102 thru -178	2.62 ± 0.08	0.97-1.57	2.82-2.92	2.67-2.77	0.25	0.13-0.38	0.05
-102 thru -284	3.53 ± 0.10	1.55-2.08	3.84-3.94	3.63-3.73	0.28	0.25-0.64	0.08
-309 thru -395	5.33 ± 0.13	2.13-3.15	5.82-5.92	5.44-5.54	0.28	0.51-0.89	0.10
-425 thru -475	6.99 ± 0.15	3.56-4.45	7.65-7.75	7.16-7.26	0.30	0.51-0.89	0.13

DYNAMIC SEALS

NOTES:

1. Because of the tendency of the O-ring to spiral in floating applications, only the listed sizes are recommended
2. Peripheral squeeze equals mean OD minus cylinder bore diameter.

Figure 124: Floating Pneumatic Seal

AS568A	O-RING DIMENSIONS					A		B		C		G		NOMINAL PERIPHERAL SQUEEZE (2)
O-RING SIZE(1)						CYLINDER BORE		PISTON OD(2)		PISTON GROOVE		GROOVE WIDTH		
	ID	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	W	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	MEAN OD (REF)	DIA	$\begin{gathered} \mathrm{TOL} \\ (-.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \mathrm{TOL} \\ (+.00) \end{gathered}$	
-6	2.90	± 0.13	1.78	± 0.08	6.45	5.56	+0.10	5.51	-0.10	1.91	-0.10	1.91	+0.10	0.89
-7	3.68	± 0.13	1.78	± 0.08	7.24	6.32	+0.10	6.27	-0.10	2.67	-0.10	1.91	+0.10	0.91
-8	4.47	± 0.13	1.78	± 0.08	8.03	7.09	+0.10	7.04	-0.10	3.43	-0.10	1.91	+0.10	0.94
-9	5.28	± 0.13	1.78	± 0.08	8.84	7.85	+0.10	7.80	-0.10	4.19	-0.10	1.91	+0.10	0.99
-10	6.07	± 0.13	1.78	± 0.08	9.63	8.61	+0.10	8.56	-0.10	4.95	-0.10	1.91	+0.10	1.02
-11	7.65	± 0.13	1.78	± 0.08	11.20	10.16	+0.10	10.11	-0.10	6.50	-0.10	1.91	+0.10	1.04
-12	9.25	± 0.13	1.78	± 0.08	12.80	11.73	+0.10	11.68	-0.10	8.08	-0.10	1.91	+0.10	1.07
-104	2.84	± 0.13	2.62	± 0.08	8.08	7.11	+0.10	7.06	-0.10	1.78	-0.10	2.82	+0.10	0.97
-105	3.63	± 0.13	2.62	± 0.08	8.86	7.85	+0.10	7.80	-0.10	2.51	-0.10	2.82	+0.10	1.02
-106	4.42	± 0.13	2.62	± 0.08	9.65	8.59	+0.10	8.53	-0.10	3.25	-0.10	2.82	+0.10	1.07
-107	5.23	± 0.13	2.62	± 0.08	10.46	9.35	+0.10	9.30	-0.10	4.01	-0.10	2.82	+0.10	1.12
-108	6.02	± 0.13	2.62	± 0.08	11.25	10.08	+0.10	10.03	-0.10	4.75	-0.10	2.82	+0.10	1.17
-109	7.59	± 0.13	2.62	± 0.08	12.83	11.61	+0.10	11.56	-0.10	6.27	-0.10	2.82	+0.10	1.22
-110	9.19	± 0.13	2.62	± 0.08	14.43	13.16	+0.10	13.11	-0.10	7.82	-0.10	2.82	+0.10	1.27
-111	10.77	± 0.13	2.62	± 0.08	16.00	14.68	+0.10	14.63	-0.10	9.35	-0.10	2.82	+0.10	1.32
-112	12.37	± 0.13	2.62	± 0.08	17.60	16.23	+0.10	16.18	-0.10	10.90	-0.10	2.82	+0.10	1.37
-113	13.94	± 0.18	2.62	± 0.08	19.18	17.75	+0.10	17.70	-0.10	12.42	-0.10	2.82	+0.10	1.42

NOTES:

1. Because of the tendency of the O-ring to spiral in floating applications, only the listed sizes are recommended
2. Peripheral squeeze equals mean OD minus cylinder bore diameter.

Figure 124: Floating Pneumatic Seal

AS568A														NOMINAL PERIPHERAL SQUEEZE (2)
$\begin{aligned} & \text { O-RING } \\ & \text { SIZE(1) } \end{aligned}$	O-RING DIMENSIONS					CYLINDER BORE		PISTON OD(2)		PISTON GROOVE		GROOVE WIDTH		
	ID	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	W	$\begin{aligned} & \text { TOL } \\ & (\pm) \end{aligned}$	MEAN OD (REF)	DIA	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \mathrm{TOL} \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \mathrm{TOL} \\ (+.00) \end{gathered}$	
-114	15.54	± 0.23	2.62	± 0.08	20.78	19.30	+0.10	19.25	-0.10	13.97	-0.10	2.82	+0.10	1.47
-115	17.12	± 0.23	2.62	± 0.08	22.35	20.83	+0.10	20.78	-0.10	15.49	-0.10	2.82	+0.10	1.52
-116	18.72	± 0.23	2.62	± 0.08	23.95	22.38	+0.10	22.33	-0.10	17.04	-0.10	2.82	+0.10	1.57
-201	4.34	± 0.13	3.53	± 0.10	11.40	9.86	+0.10	9.78	-0.10	2.59	-0.10	3.84	+0.10	1.55
-202	5.94	± 0.13	3.53	± 0.10	13.00	11.43	+0.10	11.35	-0.10	4.17	-0.10	3.84	+0.10	1.57
-203	7.52	± 0.13	3.53	± 0.10	14.58	12.98	+0.10	12.90	-0.10	5.72	-0.10	3.84	+0.10	1.60
-204	9.12	± 0.13	3.53	± 0.10	16.18	14.55	+0.10	14.48	-0.10	7.29	-0.10	3.84	+0.10	1.63
-205	10.69	± 0.13	3.53	± 0.10	17.75	16.10	+0.10	16.03	-0.10	8.84	-0.10	3.84	+0.10	1.65

DYNAMIC SEALS

AS568A														NOMINAL PERIPHERAL SQUEEZE (2)
$\begin{aligned} & \text { O-RING } \\ & \text { SIZE(1) } \end{aligned}$	O-RING DIMENSIONS					CYLINDER BORE		PISTON OD(2)		PISTON GROOVE		GROOVE WIDTH		
	ID	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	W	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	MEAN OD (REF)	DIA	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \mathrm{TOL} \\ (+.00) \end{gathered}$	
-206	12.29	± 0.13	3.53	± 0.10	19.35	17.68	+0.10	17.60	-0.10	10.41	-0.10	3.84	+0.10	1.68
-207	13.87	± 0.18	3.53	± 0.10	20.93	19.23	+0.10	19.15	-0.10	11.96	-0.10	3.84	+0.10	1.70
-208	15.47	± 0.23	3.53	± 0.10	22.53	20.80	+0.10	20.73	-0.10	13.54	-0.10	3.84	+0.10	1.73
-209	17.04	± 0.23	3.53	± 0.10	24.10	22.35	+0.10	22.28	-0.10	15.09	-0.10	3.84	+0.10	1.75
-210	18.64	± 0.25	3.53	± 0.10	25.70	23.93	+0.10	23.85	-0.10	16.66	-0.10	3.84	+0.10	1.78
-211	20.22	± 0.25	3.53	± 0.10	27.28	25.48	+0.10	25.40	-0.10	18.21	-0.10	3.84	+0.10	1.80
-212	21.82	± 0.25	3.53	± 0.10	28.88	27.05	+0.10	26.97	-0.10	19.79	-0.10	3.84	+0.10	1.83
-213	23.39	± 0.25	3.53	± 0.10	30.45	28.60	+0.10	28.52	-0.10	21.34	-0.10	3.84	+0.10	1.85
-214	24.99	± 0.25	3.53	± 0.10	32.05	30.18	+0.10	30.10	-0.10	22.91	-0.10	3.84	+0.10	1.88

NOTES:

1. Because of the tendency of the 0 -ring to spiral in floating applications, only the listed sizes are recommended.
2. Peripheral squeeze equals mean $O D$ minus cylinder bore diameter.

Figure 124: Floating Pneumatic Seal

AS568A						A		B		C		G		NOMINAL PERIPHERAL SQUEEZE (2)
$\begin{aligned} & \text { O-RING } \\ & \text { SIZE(1) } \end{aligned}$	O-RING DIMENSIONS					CYLINDER BORE		PISTON OD(2)		PISTON GROOVE		GROOVE WIDTH		
	ID	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	W	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	MEAN OD (REF)	DIA	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	DIA		DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	
-215	26.57	± 0.25	3.53	± 0.10	33.63	31.72	+0.10	31.65	-0.10	24.46	-0.10	3.84	+0.10	1.91
-216	28.17	± 0.30	3.53	± 0.10	35.23	33.30	+0.10	33.22	-0.10	26.04	-0.10	3.84	+0.10	1.93
-217	29.74	± 0.30	3.53	± 0.10	36.80	34.85	+0.10	34.77	-0.10	27.58	-0.10	3.84	+0.10	1.96
-218	31.34	± 0.30	3.53	± 0.10	38.40	36.42	+0.10	36.35	-0.10	29.16	-0.10	3.84	+0.10	1.98
-219	32.92	± 0.30	3.53	± 0.10	39.98	37.97	+0.10	37.90	-0.10	30.71	-0.10	3.84	+0.10	2.01
-220	34.52	± 0.30	3.53	± 0.10	41.58	39.55	+0.10	39.47	-0.10	32.28	-0.10	3.84	+0.10	2.03
-221	36.09	± 0.30	3.53	± 0.10	43.15	41.10	+0.10	41.02	-0.10	33.83	-0.10	3.84	+0.10	2.06
-222	37.69	± 0.38	3.53	± 0.10	44.75	42.67	+0.10	42.60	-0.10	35.41	-0.10	3.84	+0.10	2.08
-309	10.46	± 0.13	5.33	± 0.13	21.13	19.00	+0.10	18.92	-0.10	8.13	-0.10	5.82	+0.10	2.13
-310	12.07	± 0.13	5.33	± 0.13	22.73	20.57	+0.10	20.50	-0.10	9.70	-0.10	5.82	+0.10	2.16

DYNAMIC SEALS

AS568A														NOMINAL PERIPHERAL SQUEEZE (2)
$\begin{aligned} & \text { O-RING } \\ & \text { SIZE(1) } \end{aligned}$	O-RING DIMENSIONS					CYLINDER BORE		PISTON OD(2)		PISTON GROOVE		GROOVE WIDTH		
	ID	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	W	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	MEAN OD (REF)	DIA	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	
-311	13.64	± 0.18	5.33	± 0.13	24.31	22.12	+0.10	22.05	-0.10	11.25	-0.10	5.82	+0.10	2.18
-312	15.24	± 0.23	5.33	± 0.13	25.91	23.70	+0.10	23.62	-0.10	12.83	-0.10	5.82	+0.10	2.21
-313	16.81	± 0.23	5.33	± 0.13	27.48	25.25	+0.10	25.17	-0.10	14.38	-0.10	5.82	+0.10	2.24
-314	18.42	± 0.25	5.33	± 0.13	29.08	26.82	+0.10	26.75	-0.10	15.95	-0.10	5.82	+0.10	2.26
-315	19.99	± 0.25	5.33	± 0.13	30.66	28.37	+0.10	28.30	-0.10	17.50	-0.10	5.82	+0.10	2.29
-316	21.59	± 0.25	5.33	± 0.13	32.26	29.95	+0.10	29.87	-0.10	19.08	-0.10	5.82	+0.10	2.31
-317	23.16	± 0.25	5.33	± 0.13	33.83	31.50	+0.10	31.42	-0.10	20.62	-0.10	5.82	+0.10	2.34
-318	24.77	± 0.25	5.33	± 0.13	35.43	33.07	+0.10	32.99	-0.10	22.20	-0.10	5.82	+0.10	2.36
-319	26.34	± 0.25	5.33	± 0.13	37.01	34.62	+0.10	34.54	-0.10	23.75	-0.10	5.82	+0.10	2.39
-320	27.94	± 0.30	5.33	± 0.13	38.61	36.20	+0.10	36.12	-0.10	25.32	-0.10	5.82	+0.10	2.41
-321	29.51	± 0.30	5.33	± 0.13	40.18	37.74	+0.10	37.67	-0.10	26.87	-0.10	5.82	+0.10	2.44
-322	31.12	± 0.30	5.33	± 0.13	41.78	39.32	+0.10	39.24	-0.10	28.45	-0.10	5.82	+0.10	2.46
-323	32.69	± 0.30	5.33	± 0.13	43.36	40.87	+0.10	40.79	-0.10	30.00	-0.10	5.82	+0.10	2.49
-324	34.29	± 0.30	5.33	± 0.13	44.96	42.44	+0.10	42.37	-0.10	31.57	-0.10	5.82	+0.10	2.51
-325	37.47	± 0.38	5.33	± 0.13	48.13	45.59	+0.10	45.52	-0.10	34.72	-0.10	5.82	+0.10	2.54
-326	40.64	± 0.38	5.33	± 0.13	51.31	48.74	+0.10	48.67	-0.10	37.87	-0.10	5.82	+0.10	2.57
-327	43.82	± 0.38	5.33	± 0.13	54.48	51.89	+0.10	51.82	-0.10	41.02	-0.10	5.82	+0.10	2.59
-328	46.99	± 0.38	5.33	± 0.13	57.66	55.04	+0.10	54.97	-0.10	44.17	-0.10	5.82	+0.10	2.62
-329	50.17	± 0.46	5.33	± 0.13	60.83	58.19	+0.10	58.12	-0.10	47.32	-0.10	5.82	+0.10	2.64
-330	53.34	± 0.46	5.33	± 0.13	64.01	61.34	+0.10	61.26	-0.10	50.47	-0.10	5.82	+0.10	2.67
-331	56.52	± 0.46	5.33	± 0.13	67.18	64.49	+0.10	64.41	-0.10	53.62	-0.10	5.82	+0.10	2.69
-332	59.69	± 0.46	5.33	± 0.13	70.36	67.64	+0.10	67.56	-0.10	56.77	-0.10	5.82	+0.10	2.72
-333	62.87	± 0.51	5.33	± 0.13	73.53	70.79	+0.10	70.71	-0.10	59.92	-0.10	5.82	+0.10	2.74

NOTES:

1. Because of the tendency of the O-ring to spiral in floating applications, only the listed sizes are recommended.
2. Peripheral squeeze equals mean $O D$ minus cylinder bore diameter.

Figure 124: Floating Pneumatic Seal

AS568AO-RING SIZE(1)														NOMINAL PERIPHERAL SQUEEZE (2)
	O-RING DIMENSIONS					CYLINDER BORE		PISTON OD(2)		PISTON GROOVE		GROOVE WIDTH		
	ID	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	W	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	MEAN OD (REF)	DIA	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	DIA	$\begin{gathered} \mathrm{TOL} \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	
-334	66.04	± 0.51	5.33	± 0.13	76.71	73.94	+0.10	73.86	-0.10	63.07	-0.10	5.82	+0.10	2.77
-335	69.22	± 0.51	5.33	± 0.13	79.88	77.09	+0.10	77.01	-0.10	66.22	-0.10	5.82	+0.10	2.79
-336	72.39	± 0.51	5.33	± 0.13	83.06	80.24	+0.10	80.16	-0.10	69.37	-0.10	5.82	+0.10	2.82
-337	75.57	± 0.61	5.33	± 0.13	86.23	83.39	+0.10	83.31	-0.10	72.52	-0.10	5.82	+0.10	2.84
-338	78.74	± 0.61	5.33	± 0.13	89.41	86.54	+0.10	86.46	-0.10	75.67	-0.10	5.82	+0.10	2.87
-339	81.92	± 0.61	5.33	± 0.13	92.58	89.69	+0.10	89.61	-0.10	78.82	-0.10	5.82	+0.10	2.90
-340	85.09	± 0.61	5.33	± 0.13	95.76	92.84	+0.10	92.76	-0.10	81.97	-0.10	5.82	+0.10	2.92

DYNAMIC SEALS

AS568A														NOMINAL PERIPHERAL SQUEEZE (2)
O-RING SIZE(1)	O-RING DIMENSIONS					CYLINDER BORE		PISTON OD(2)		PISTON GROOVE		GROOVE WIDTH		
	ID	$\begin{aligned} & \text { TOL } \\ & (\pm) \end{aligned}$	W	$\begin{aligned} & \text { TOL } \\ & (\pm) \end{aligned}$	$\begin{gathered} \text { MEAN OD } \\ \text { (REF) } \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	DIA	$\begin{gathered} \mathrm{TOL} \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	
-341	88.27	± 0.61	5.33	± 0.13	98.93	95.99	+0.10	95.91	-0.10	85.12	-0.10	5.82	+0.10	2.95
-342	91.44	± 0.71	5.33	± 0.13	102.11	99.14	+0.10	99.06	-0.10	88.27	-0.10	5.82	+0.10	2.97
-343	94.62	± 0.71	5.33	± 0.13	105.28	102.29	+0.10	102.21	-0.10	91.41	-0.10	5.82	+0.10	3.00
-344	97.79	± 0.71	5.33	± 0.13	108.46	105.44	+0.10	105.36	-0.10	94.56	-0.10	5.82	+0.10	3.02
-345	100.97	± 0.71	5.33	± 0.13	111.63	108.59	+0.10	108.51	-0.10	97.71	-0.10	5.82	+0.10	3.05
-346	104.14	± 0.71	5.33	± 0.13	114.81	111.73	+0.10	111.66	-0.10	100.86	-0.10	5.82	+0.10	3.07
-347	107.32	± 0.76	5.33	± 0.13	117.98	114.88	+0.10	114.81	-0.10	104.01	-0.10	5.82	+0.10	3.10
-348	110.49	± 0.76	5.33	± 0.13	121.16	118.03	+0.10	117.96	-0.10	107.16	-0.10	5.82	+0.10	3.12
-349	113.67	± 0.76	5.33	± 0.13	124.33	121.18	+0.10	121.11	-0.10	110.31	-0.10	5.82	+0.10	3.15
-425	113.67	± 0.84	6.99	± 0.15	127.64	124.08	+0.10	123.98	-0.10	109.75	-0.10	7.65	+0.10	3.56

NOTES:

1. Because of the tendency of the 0 -ring to spiral in floating applications, only the listed sizes are recommended.
2. Peripheral squeeze equals mean $O D$ minus cylinder bore diameter.

Figure 124: Floating Pneumatic Seal

AS568A						A		B		C		G		NOMINAL PERIPHERAL SQUEEZE (2)
$\begin{aligned} & \text { O-RING } \\ & \text { SIZE(1) } \end{aligned}$	O-RING DIMENSIONS					CYLINDER BORE		PISTON OD(2)		PISTON GROOVE		GROOVE WIDTH		
	ID	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	W	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	MEAN OD (REF)	DIA	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	TOL (+.00)	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	
-426	116.84	± 0.84	6.99	± 0.15	130.81	127.23	+0.10	127.13	-0.10	112.90	-0.10	7.65	+0.10	3.58
-427	120.02	± 0.84	6.99	± 0.15	133.99	130.38	+0.10	130.28	-0.10	116.05	-0.10	7.65	+0.10	3.61
-428	123.19	± 0.84	6.99	± 0.15	137.16	133.53	+0.10	133.43	-0.10	119.20	-0.10	7.65	+0.10	3.63
-429	126.37	± 0.94	6.99	± 0.15	140.34	136.68	+0.10	136.58	-0.10	122.35	-0.10	7.65	+0.10	3.66
-430	129.54	± 0.94	6.99	± 0.15	143.51	139.83	+0.10	139.73	-0.10	125.50	-0.10	7.65	+0.10	3.68
-431	132.72	± 0.94	6.99	± 0.15	146.69	142.98	+0.10	142.88	-0.10	128.65	-0.10	7.65	+0.10	3.71
-432	135.89	± 0.94	6.99	± 0.15	149.86	146.13	+0.10	146.02	-0.10	131.80	-0.10	7.65	+0.10	3.73
-433	139.07	± 0.94	6.99	± 0.15	153.04	149.28	+0.10	149.17	-0.10	134.95	-0.10	7.65	+0.10	3.76
-434	142.24	± 0.94	6.99	± 0.15	156.21	152.43	+0.10	152.32	-0.10	138.10	-0.10	7.65	+0.10	3.78
-435	145.42	± 0.94	6.99	± 0.15	159.39	155.58	+0.10	155.47	-0.10	141.25	-0.10	7.65	+0.10	3.81
-436	148.59	± 0.94	6.99	± 0.15	162.56	158.72	+0.10	158.62	-0.10	144.40	-0.10	7.65	+0.10	3.84
-437	151.77	± 0.94	6.99	± 0.15	165.74	161.87	+0.10	161.77	-0.10	147.55	-0.10	7.65	+0.10	3.86
-438	158.12	± 1.02	6.99	± 0.15	172.09	168.20	+0.10	168.10	-0.10	153.87	-0.10	7.65	+0.10	3.89

DYNAMIC SEALS

$\begin{aligned} & \text { AS568A } \\ & \text { O-RING } \\ & \text { SIZE(1) } \end{aligned}$	ID	$\begin{aligned} & \text { TOL } \\ & (\pm) \end{aligned}$	DIMW	TOL (\pm)	MEAN OD (REF)	A		B		C		G		NOMINAL PERIPHERAL SQUEEZE (2)
						CYLINDER BORE		PISTON OD(2)		PISTON GROOVE		GROOVE WIDTH		
						DIA	$\begin{gathered} \text { TOL } \\ (-., 00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \mathrm{TOL} \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \mathrm{TOL} \\ (+.00) \end{gathered}$	
-439	164.47	± 1.02	6.99	± 0.15	178.44	174.52	+0.10	174.42	-0.10	160.20	-0.10	7.65	+0.10	3.91
-440	170.82	± 1.02	6.99	± 0.15	184.79	180.85	+0.10	180.75	-0.10	166.52	-0.10	7.65	+0.10	3.94
-441	177.17	± 1.02	6.99	± 0.15	191.14	187.17	+0.10	187.07	-0.10	172.85	-0.10	7.65	+0.10	3.96
-442	183.52	± 1.14	6.99	± 0.15	197.49	193.50	+0.10	193.40	-0.10	179.17	-0.10	7.65	+0.10	3.99
-443	189.87	± 1.14	6.99	± 0.15	203.84	199.82	+0.10	199.72	-0.10	185.50	-0.10	7.65	+0.10	4.01
-444	196.22	± 1.14	6.99	± 0.15	210.19	206.15	+0.10	206.04	-0.10	191.82	-0.10	7.65	+0.10	4.04
-445	202.57	± 1.14	6.99	± 0.15	216.54	212.47	+0.10	212.37	-0.10	198.15	-0.10	7.65	+0.10	4.06
-446	215.27	± 1.40	6.99	± 0.15	229.24	225.15	+0.10	225.04	-0.10	210.82	-0.10	7.65	+0.10	4.09
-447	227.97	± 1.40	6.99	± 0.15	241.94	237.82	+0.10	237.72	-0.10	223.49	-0.10	7.65	+0.10	4.11
-448	240.67	± 1.40	6.99	± 0.15	254.64	250.49	+0.10	250.39	-0.10	236.17	-0.10	7.65	+0.10	4.14
-449	253.37	± 1.40	6.99	± 0.15	267.34	263.17	+0.10	263.07	-0.10	248.84	-0.10	7.65	+0.10	4.17
-450	266.07	± 1.52	6.99	± 0.15	280.04	275.84	+0.10	275.74	-0.10	261.52	-0.10	7.65	+0.10	4.19
-451	278.77	± 1.52	6.99	± 0.15	292.74	288.52	+0.10	288.42	-0.10	274.19	-0.10	7.65	+0.10	4.22
-452	291.47	± 1.52	6.99	± 0.15	305.44	301.19	+0.10	301.09	-0.10	286.87	-0.10	7.65	+0.10	4.24
-453	304.17	± 1.52	6.99	± 0.15	318.14	313.87	+0.10	313.77	-0.10	299.54	-0.10	7.65	+0.10	4.27
-454	316.87	± 1.52	6.99	± 0.15	330.84	326.54	+0.10	326.44	-0.10	312.22	-0.10	7.65	+0.10	4.29
-455	329.57	± 1.52	6.99	± 0.15	343.54	339.22	+0.10	313.72	-0.10	324.89	-0.10	7.65	+0.10	4.32
-456	342.27	± 1.78	6.99	± 0.15	356.24	351.89	+0.10	351.79	-0.10	337.57	-0.10	7.65	+0.10	4.34
-457	354.97	± 1.78	6.99	± 0.15	368.94	364.57	+0.10	364.46	-0.10	350.24	-0.10	7.65	+0.10	4.37
-458	367.67	± 1.78	6.99	± 0.15	381.64	377.24	+0.10	377.14	-0.10	362.92	-0.10	7.65	+0.10	4.39
-459	380.37	± 1.78	6.99	± 0.15	394.34	389.92	+0.10	389.81	-0.10	375.59	-0.10	7.65	+0.10	4.42
-460	393.07	± 1.78	6.99	± 0.15	407.04	402.59	+0.10	402.49	-0.10	388.26	-0.10	7.65	+0.10	4.45

DYNAMIC SEALS

Figure 126: Surface Finish \& Shape Suggestions

NOTES
\longrightarrow

Figure 127: Rotary Seal

Nominal Shaft Diameter	$\begin{aligned} & \text { AS568A } \\ & \text { O-RING } \\ & \text { SIZE(1) } \end{aligned}$	O-RING DIMENSIONS					A		B		C		D	G	
							SHAFT		HOUSING BORE		GROOVE		HOUSING BORE	GROOVE	
		ID	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	W	$\begin{aligned} & \text { TOL } \\ & (\pm) \end{aligned}$	MEAN OD (REF)	DIA	$\begin{gathered} \text { TOL } \\ (-.00) \end{gathered}$	DIA	$\begin{gathered} \text { TOL } \\ (+.00) \end{gathered}$	DIA		(MIN)	WIDTH	$\begin{aligned} & \text { TOL } \\ & (+/-) \end{aligned}$
1/8	-105	3.63	± 0.13	2.62	± 0.08	8.86	3.15	-0.03	3.40	+0.05	8.15	+0.05	22.23	2.97	± 0.08
5/32	-106	4.42	± 0.13	2.62	± 0.08	9.65	3.94	-0.03	4.19	+0.05	8.94	+0.05	22.23	2.97	± 0.08
3/16	-107	5.23	± 0.13	2.62	± 0.08	10.46	4.72	-0.03	4.98	+0.05	9.73	+0.05	22.23	2.97	± 0.08
7/32	-108	6.02	± 0.13	2.62	± 0.08	11.25	5.54	-0.03	5.79	+0.05	10.54	+0.05	22.23	2.97	± 0.08
9/32	-109	7.59	± 0.13	2.62	± 0.08	12.83	7.11	-0.03	7.37	+0.05	12.12	+0.05	22.23	2.97	± 0.08
5/16	-110	9.19	± 0.13	2.62	± 0.08	14.43	7.90	-0.03	8.15	+0.05	12.90	+0.05	22.23	2.97	± 0.08
3/8	-111	10.77	± 0.13	2.62	± 0.08	16.00	9.50	-0.03	9.75	+0.05	14.50	+0.05	22.23	2.97	± 0.08
7/16	-112	12.37	± 0.13	2.62	± 0.08	17.60	11.07	-0.03	11.33	+0.05	16.08	+0.05	22.23	2.97	± 0.08
1/2	-113	13.94	± 0.18	2.62	± 0.08	19.18	12.67	-0.03	12.93	+0.05	17.68	+0.05	22.23	2.97	± 0.08
9/16	-114	15.54	± 0.23	2.62	± 0.08	20.78	14.25	-0.03	14.50	+0.05	19.25	+0.05	22.23	2.97	± 0.08
5/8	-115	17.12	± 0.23	2.62	± 0.08	22.35	15.85	-0.03	16.10	+0.05	20.85	+0.05	22.23	2.97	± 0.08
11/16	-116	18.72	± 0.23	2.62	± 0.08	23.95	17.42	-0.03	17.68	+0.05	22.43	+0.05	22.23	2.97	± 0.08

DYNAMIC SEALS

Nominal Shaft Diameter	$\begin{aligned} & \text { AS568A } \\ & \text { O-RING } \\ & \text { SIZE(1) } \end{aligned}$	O-RING DIMENSIONS					A		B		C		D	G	
							SHAFT		HOUSING BORE		GROOVE		HOUSING BORE	GROOVE	
		ID	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	W	$\begin{aligned} & \mathrm{TOL} \\ & (\pm) \end{aligned}$	MEAN OD (REF)	DIA	$\begin{aligned} & \text { TOL } \\ & (-.00) \end{aligned}$	DIA	$\begin{gathered} \mathrm{TOL} \\ (+.00) \end{gathered}$	DIA	$\begin{gathered} \mathrm{TOL} \\ (+.00) \end{gathered}$	(MIN)	WIDTH	$\begin{aligned} & \mathrm{TOL} \\ & (+/-) \end{aligned}$
3/8	-205	10.69	± 0.13	3.53	± 0.10	17.75	9.50	-0.03	9.75	+0.05	16.33	+0.05	28.58	3.99	± 0.08
7/16	-206	12.29	± 0.13	3.53	± 0.10	19.35	11.07	-0.03	11.33	+0.05	17.91	+0.05	28.58	3.99	± 0.08
1/2	-207	13.87	± 0.18	3.53	± 0.10	20.93	12.67	-0.03	12.93	+0.05	19.51	+0.05	28.58	3.99	± 0.08
9/16	-208	15.47	± 0.23	3.53	± 0.10	22.53	14.25	-0.03	14.50	+0.05	21.08	+0.05	28.58	3.99	± 0.08
5/8	-209	17.04	± 0.23	3.53	± 0.10	24.10	15.85	-0.03	16.10	+0.05	22.68	+0.05	28.58	3.99	± 0.08
11/16	-210	18.64	± 0.25	3.53	± 0.10	25.70	17.42	-0.03	17.68	+0.05	24.26	+0.05	28.58	3.99	± 0.08
3/4	-211	20.22	± 0.25	3.53	± 0.10	27.28	19.02	-0.03	19.28	+0.05	25.86	+0.05	28.58	3.99	± 0.08
13/16	-212	21.82	± 0.25	3.53	± 0.10	28.88	20.60	-0.03	20.85	+0.05	27.43	+0.05	28.58	3.99	± 0.08
7/8	-213	23.39	± 0.25	3.53	± 0.10	30.45	22.20	-0.03	22.45	+0.05	29.03	+0.05	28.58	3.99	± 0.08
15/16	-214	24.99	± 0.25	3.53	± 0.10	32.05	23.77	-0.03	24.03	+0.05	30.61	+0.05	28.58	3.99	± 0.08
1	-215	26.57	± 0.25	3.53	± 0.10	33.63	25.37	-0.03	25.63	+0.05	32.21	+0.05	28.58	3.99	± 0.08
$11 / 16$	-216	28.17	± 0.30	3.53	± 0.10	35.23	26.95	-0.03	27.20	+0.05	33.78	+0.05	28.58	3.99	± 0.08
$11 / 8$	-217	29.74	± 0.30	3.53	± 0.10	36.80	28.55	-0.03	28.80	+0.05	35.38	+0.05	28.58	3.99	± 0.08
$13 / 16$	-218	31.34	± 0.30	3.53	± 0.10	38.40	30.12	-0.03	30.38	+0.05	36.96	+0.05	28.58	3.99	± 0.08
$11 / 4$	-219	32.92	± 0.30	3.53	± 0.10	39.98	31.72	-0.03	31.98	+0.05	38.56	+0.05	28.58	3.99	± 0.08
1	-319	26.34	± 0.25	5.33	± 0.13	37.01	25.37	-0.03	25.63	+0.05	35.61	+0.05	38.10	5.97	± 0.08
$11 / 16$	-320	27.94	± 0.30	5.33	± 0.13	38.61	26.95	-0.03	27.20	+0.05	37.19	+0.05	38.10	5.97	± 0.08
$11 / 8$	-321	29.51	± 0.30	5.33	± 0.13	40.18	28.55	-0.03	28.80	+0.05	38.79	+0.05	38.10	5.97	± 0.08
$13 / 16$	-322	31.12	± 0.30	5.33	± 0.13	41.78	30.12	-0.03	30.38	+0.05	40.36	+0.05	38.10	5.97	± 0.08
$11 / 4$	-323	32.69	± 0.30	5.33	± 0.13	43.36	31.72	-0.03	31.98	+0.05	41.96	+0.05	38.10	5.97	± 0.08
$15 / 16$	-324	34.29	± 0.30	5.33	± 0.13	44.96	33.30	-0.03	33.55	+0.05	43.54	+0.05	38.10	5.97	± 0.08
$17 / 16$	-325	37.47	± 0.38	5.33	± 0.13	48.13	36.47	-0.03	36.73	+0.05	46.71	+0.05	38.10	5.97	± 0.08
$11 / 2$	-326	40.64	± 0.38	5.33	± 0.13	51.31	38.07	-0.03	38.33	+0.05	48.31	+0.05	38.10	5.97	± 0.08

FAILURE DIAGNOSTICS

COMMON CAUSES

"Whether your sealing needs are simple or complex, the factors to be considered are numerous enough to guarantee that not every seal will be successful in every application."

As should be clear by now, designing a seal and selecting a material that will function well in its environment are far from simple tasks. Even experienced seal engineers are often met with unusual service requirements that test both their ingenuity and the capabilities of the seal. Whether your sealing needs are simple or complex, the factors to be considered are numerous enough to guarantee that not every seal will be successful in every application.

When 0-rings do fail, the cause can generally be traced back to a handful of usual suspects. These include use of an incorrect O-ring size, non-compatibility between the seal and its environment, installation error, and lack of proper lubrication. All of these dangers were discussed in previous sections of this design guide.
A fifth common culprit is improper gland design. Since the correct amount of 0-ring squeeze is vital to a seal's longevity, a design that allows for either not enough compression or too much compression is problematic. A gland that does not provide enough room for the seal to undergo normal expansion is equally troublesome. Since the various elements of any seal design each carry their own tolerances, these potential deviations must be incorporated into the design calculations.
An improper design can often be spotted by calculating the tolerance stack-up (also known as tolerance build-up, see Table 54). Let's say, for example, that an 0-ring cross-section has a tolerance of $\pm 0.08 \mathrm{~mm}$. This means that the cross-section may actually be either 0.08 mm larger or 0.08 mm smaller than the stated measurement, thus creating a 0.16 mm tolerance range. In the same design, the groove diameter has its own tolerance of $\pm 0.025 \mathrm{~mm}$ (a 0.05 mm range), and the bore diameter also has a tolerance of $\pm 0.025 \mathrm{~mm}$ (again, a 0.05 mm range). The sum total of these three tolerance ranges (in this case, 0.16 mm plus 0.05 mm plus 0.05 mm , or 0.26 mm) is the total tolerance stack-up for this particular seal.
Keep in mind that there is no "magic number" when it comes to tolerance stack-up. While 0.26 mm might be an acceptable stack-up tolerance for one application, this same total in a different design may result in either too little or too much 0 -ring compression, and, ultimately, seal failure. It is also important to realize that as the overall size of a seal decreases, the importance of even the slightest tolerances increases. In other words, the smaller the space in question, the less "elbow room" you have.
Many times there is not just a single cause for seal failure. Rather, a combination of factors often act in unison to damage the 0 -ring and doom the seal. These causes should be looked at individually, however, before any interaction among factors can be fully understood. With that in mind, what follows are separate discussions of the most common causes of 0 -ring failure.

Table 54: Tolerance Stack-Up

ABRASION

```
"The surface of the O-ring in dynamic contact with the mating part
    gradually becomes worn and flattened."
```

Failure due to abrasion is most likely to occur in dynamic seals. The surface of the 0 -ring in dynamic contact with the mating part gradually becomes worn and flattened. Wear lines parallel to the direction of movement are often visible within this flattened area. While flattening on one side of an 0-ring's cross-section is indicative of abrasion failure, flattening on both sides is an indication of compression set. For more information on compression set see Diagnosing 0-Ring Failure: Compression Set.

Directly or indirectly, improperly finished metal surfaces usually contribute to abrasion failure. Surfaces that are too rough (generally greater than $0.8 \mu \mathrm{~m}$ RMS for static seals or $0.4 \mu \mathrm{~m}$ RMS for dynamic seals) directly abrade the seal material. Surfaces that are too smooth (less than $0.1 \mu \mathrm{mRMS}$) lack the necessary pockets or cavities that act as reservoirs for lubrication. Either way, the 0 -ring suffers. Figure 128 is an illustration of 0 -ring failure due to abrasion.
Even if the surface finish is correct, failure to keep the seal properly lubricated will lead to abrasion problems. Lubrication concerns can often be alleviated through the use of either internally lubricated or surface-treated 0-rings.
Also keep in mind that abrasive contaminants in the system fluid(s) can damage seals and should be excluded and/or filtered out. Polyurethane, carboxylated nitrile, and hydrogenated nitrile all offer increased abrasion resistance.

ABRASION

Figure 128: Failure Due to Abrasion

COMPRESSION SET

"This permanent flattening of the cross-section can be seen on both sides of the O-ring at the original points of compression."

Failure due to compression set occurs in both static and dynamic seals. Compression set failure looks similar to abrasion failure, in which there is a flattening on one side of the 0 -ring's cross-section. With compression set, this permanent flattening of the cross-section can be seen on both sides of the 0 -ring at the original points of compression. The seal usually hardens and assumes the shape of the gland. In some instances, surface cracks may also be visible.

At the most basic level, use of an elastomer with inherently poor compression set properties or a compound that has not been properly cured can doom a seal. Even if materials are initially acceptable, the aforementioned 0 -ring hardening (and an accompanying loss of elasticity) can be caused by temperature increases during service. These thermal increases can be frictional (i.e. as a result of the buildup of friction-generated heat), environmental (as a result of external elements), and/or systemic (as a result of system fluids).
A limited degree of fluid-induced volume swell may help offset the effects of compression set. On the other hand, some fluids may cause excessive swell, which can exacerbate compression set. The excessive squeeze generated by improperly designed glands or adjustable glands that are over-tightened can also be problematic. Figure 129 is an illustration of 0 -ring failure due to compression set
Materials offering improved compression set properties include peroxide-cured nitrile, peroxide-cured EPDM, hydrogenated nitrile, ethylene acrylic (Vamac®), fluorocarbon (Viton®), fluorosilicone, silicone, and natural rubber

Figure 129: Failure Due to Compression Set

DIESELING

"The seal is burned, leaving it with a black, charred appearance."

Failure due to compression set occurs in both static and dynamic seals. Compression set failure looks similar to abrasion failure, in which there is a flattening on one side of the 0 -ring's cross-section. With compression set, this permanent flattening of the cross-section can be seen on both sides of the 0 -ring at the original points of compression. The seal usually hardens and assumes the shape of the gland. In some instances, surface cracks may also be visible.

If the hydraulic fluid (or lubricating fluid) is flammable, the increasing temperature can reach the combustion point, setting off a series of miniature explosions. As a result of these explosions, the seal is burned, leaving it with a black, charred appearance and burned surface pits. Figure 130 is an illustration of 0 -ring failure due to dieseling.

DIESELING

Figure 130: Failure Due to Dieseling

EXPLOSIVE DECOMPRESSION

"Explosive decompression is a major risk for any seal operating in a high-pressure gas environment."

Also known as gas expansion rupture or O-ring embolism, explosive decompression is a major risk for any seal operating in a high-pressure gas environment. Gas can get trapped inside the seal's micropores. If the seal faces an equilibrium shift (as with rapid decompression), this trapped gas rapidly expands in an effort to match external pressure.

The amount of structural damage done to the 0 -ring as a result of this internal expansion depends on the volume of the trapped gas and the hardness of the seal. Smaller volumes (especially in soft compounds) may only cause surface blisters which can disappear as pressure equalizes. Larger volumes (particularly in hard compounds) can cause deep cross-section ruptures or even total 0-ring disintegration. Higher temperatures further aggravate this phenomenon. Figure 131 is an example of 0 -ring failure due to explosive decompression.
One way to prevent explosive decompression is to allow for longer decompression periods. Trapped gas can exit the elastomer more slowly, minimizing the chances for damage. Use of seal materials in excess of 80 Shore A may also be helpful. Harder, high shear modulus seals have the strength to dissipate fracture energy as it propagates through the 0 -ring. Smaller cross-sections offer less space in which gas can become trapped.
Generally speaking, carbon dioxide (CO2) is more likely to cause elastomer swell and rupture than nitrogen. For CO2 contact, as in air guns, polyurethane is by far the best choice. For seals facing nitrogen and other pressurized gases, high-ACN content nitrile may be a solution. In some cases, you might consider soaking the seal in specific oils (such as MIL-H-5606) prior to use. The oil fills the spaces that might otherwise be filled by gas.

EXPLOSIVE DECOMPRESSION

Figure 131: Failure Due to Explosive Decompression

EXTRUSION \& NIBBLING

> "The extruded portion of the seal is susceptible to being chewed away to the point of failure."

Elevated system pressure can sometimes forcibly extend, or extrude, part of an 0-ring into the gland's diametral clearance gap. The extruded portion of the seal is susceptible to being chewed away to the point of failure. Even if permanent extrusion is avoided, small bits may still be "nibbled" away from the low-pressure side of the seal.

This nibbling is the result of pressure fluctuations within the system. Increasing pressure expands metal components, often enlarging the clearance gap. The larger the gap, the easier it is for the 0 -ring to flow into it. When pressure later returns to normal, the 0-ring's memory allows it to regain its original shape, but it does not evacuate the retracting gap before a small chunk is torn away. Repeated instances of this nibbling can lead to seal failure. Though extrusion and nibbling are most often seen in dynamic rod or piston seals, static seals facing high pressure pulsations may also suffer. Figure 132 is an example of 0 -ring failure due to extrusion and nibbling.
No matter what the application, excessive system pressure will obviously increase the likelihood of seal extrusion, especially if no back-up rings or other anti-extrusion devices are employed. Even if they don't increase under pressure, clearance gaps that are inherently too large or irregularly shaped are dangerous. O-rings that are too soft or too large for the gland (either initially or after swelling in system fluid) are to be avoided. Temperature increases can also soften O-rings and make them more susceptible to extrusion. Sharp edges within the gland will be problematic and should be radiused to 0.025 mm to 0.05 mm . Use of polyurethane 0 -rings and/or back-up rings is suggested to avoid both extrusion and nibbling.

EXTRUSION \& NIBBLING

Figure 132: Failure Due to Extrusion \& Nibbling

HARDENING \& EMBRITTLEMENT

"Hardening of an O-ring in service dramatically reduces its resilience, and, as a result, severely limits its ability to act as an effective seal."

Ocurring in both static and dynamic seals, O-ring hardening is chiefly caused by exposure to high temperatures. Hardening results when exposure extends for a period sufficient to 1) cause additional cross-linking among the material's macromolecular chains, 2) evaporate plasticizers in the compound, and 3) promote oxidation. Hardening of an O-ring in service dramatically reduces its resilience, and, as a result, severely limits its ability to act as an effective seal.

Unwanted cross-linking of the rubber can also be caused by chemical attack. For example, sulfur-containing compounds can cause nitrile rubber to cross-link. Amine exposure will lead to cross-linking and hardening in fluorocarbon elastomers.
Progressive hardening of the seal has two phases: surface cracking and/or pitting, followed by hardening of the entire cross-section. Compressed seals will also undergo high degrees of compression set as they harden. Figure 133 is an example of 0-ring failure due to hardening
Lowering the system's operating temperature will help avoid or correct this problem. Use of materials that can withstand higher temperatures and that are resistant to chemical attack will also be beneficial.

HARDENING

Figure 133: Failure Due to Hardening

HOLE CROSSING DAMAGE

```
"The shearing of the seal compromises the O-ring and leads to
immediate failure."
```

A problem seen in dynamic seals, hole crossing damage is a clipping, or shearing away, of part of the pressurized 0-ring's exterior where it crosses a hole or pressure port in a mating surface. It can be caused when the edges of the hole are sharp and / or when differential pressure has unseated the 0 -ring from its groove, allowing the edge of the hole to clip the 0 -ring as it crosses. Regardless of the cause, the shearing of the seal compromises the 0 -ring and leads to immediate failure.

Ideally, the design should be such that the pressurized seal does not have to pass over a groove, port, or hole during service. Barring that, hole crossing damage can generally be avoided by chamfering the edges of the hole in advance. Use of chamfering and correct radiusing will help ensure the O-ring is correctly guided back into its norma squeeze mode as it finishes crossing the hole.
Tough, cut-resistant polyurethane seals should be considered for applications where hole crossing damage may occur. Reducing or eliminating differential pressure will also help lessen hole crossing damage. Concave back-up rings can help restrain the 0-ring in its groove to prevent hole crossing damage. Composite rubber-bonded-to-metal seals also prevent the rubber from flowing into the hole as the seal passes by. Figure 134 is an example of 0 -ring failure due to hole crossing damage.

HOLE CROSSING DAMAGE

Figure 134: Failure Due to Hole Crossing Damage

INSTALLATION DAMAGE

```
"All of the care taken in selecting the most effective O-ring material
    or designing the most efficient seal can be negated by careless
    installation practices."
```

As should be clear, care must be taken during the installation of each and every 0-ring in order to avoid damaging the seal and limiting its effectiveness. All of the care taken in selecting the most effective 0-ring material or designing the most efficient seal can be negated by careless installation practices.

Admittedly, however, some environments are more inherently hostile to O-rings than others. Situations most conducive to installation damage include either static or dynamic seals in which the squeeze is between the 0 -ring's inside diameter (I.D.) and outside diameter (0.D.), as well as seals in which the 0 -ring must fit over tube ends or threads.
Installation damage can be seen in the form of surface "skiving," clean cuts made by metal components. Damage may also involve twisting or puncturing the seal. Figure 135 is an example of 0 -ring failure due to installation damage
Though it sounds simplistic, consistently careful use of correctly-sized and adequatelylubricated 0-rings can eliminate many installation errors. Beyond that, all sharp gland edges should be radiused prior to installation. Threads should be covered with tape or other buffer elements during installation. A 15° to 20° lead-in chamfer is also advisable. Cleanliness of the installation area will reduce the chances of particulate damage. Proper use of any necessary installation tool(s) will save both time and money.

INSTALLATION DAMAGE

Figure 135: Failure Due to Installation Damage

PLASTICIZER EXTRACTION (SHRINKAGE)

```
"If plasticizer is extracted (chemically removed) by system fluids, the seal's flexibility and resilience both suffer."
```

Plasticizer extraction can affect all seals, especially those used in fuel systems. Plasticizer is initially added to an O -ring compound in order to augment its flexibility and resilience. If plasticizer is extracted (chemically removed) by system fluids, the seal's flexibility and resilience both suffer. The 0-ring hardens, small cracks start to appear in the stressed area of the cross-section, and the seal's overall volume decreases.

This loss of volume (shrinkage), coupled with the aforementioned hardening, is typically accompanied by a loss in retained sealing force, i.e. the seal will leak. The best available solution is to use a seal material that is still compatible with all elements of the system but that contains little or no extractable plasticizer. Figure 136 is an example of 0 -ring failure due to plasticizer extraction.

SHRINKAGE

Figure 136: Failure Due to Plasticizer
Extraction

SPIRAL FAILURE

"Spiral failure results from instability of the seal, which is unable to adequately hold its intended position within the gland."

As the name implies, spiral failure results when the 0-ring develops spiral surface cuts. These cuts typically recur at regular intervals along the seal's exterior. At its most basic level, spiral failure results from instability of the seal, which is unable to adequately hold its intended position within the gland. Generally seen in long-stroke hydraulic or pneumatic (piston and rod) seals, spiral failure is most likely to occur in 0 -rings with a large inside diameter (I.D.) to cross-section (W) ratio.

This is because the 0-ring doesn't have enough strength to resist the twisting forces that naturally develop during dynamic movement. Part of the O-ring rolls as part of it slides, and this spiraling motion causes the cross-section to be twisted and cuts to develop on the seal's surface.
Other factors that may also contribute to spiral failure include uneven surface finishes, lack of proper lubrication, and installation error. Figure 137 is an example of 0 -ring failure due to spiraling.
Possible solutions to spiral failure include using 1) as large a seal cross-section as possible, 2) harder compounds, 3) smoother surface finishes, and 4) lubrication. In some cases, it may be preferable to use an alternate seal cross-section that will be more stable within the gland. For more information on O-ring alternatives, see Exploring Other Options.

SPIRAL FAILURE

Figure 137: Failure Due to Spiraling

WEATHER \& OZONE CRACKING

"Ozone weakens the O-ring compound by attacking unsaturated (double) bonds and breaking apart the polymer chains."

Exposure to ozone (03) and other atmospheric contaminants can cause tiny cracks to form on the 0-ring's surface. Running perpendicular to the direction of stress, these cracks are visible evidence of the fact that ozone weakens the 0 -ring compound by attacking unsaturated (double) bonds and breaking apart the polymer chains. This breakage is known as chain scission.

Cracking (also known as crazing) may be prevented (or at least limited) by using materials with fully-saturated bonds that are less susceptible to chemical attack Weather- and ozone-resistant elastomers such as silicone, fluorocarbon (Viton®), EPDM, polyurethane, polyacrylate, fluorosilicone, ethylene acrylic, and epichlorohydrin are all good choices. In some instances, an elastomer whose ozone resistance is inherently poor can be supplemented with antiozonant additives.
Keep in mind that stretching an 0-ring more than 5% increases its exposure to chemica attack. Storage around ozone-generating equipment (such as electric motors), especially in a stretched (installed) condition, will lead to rapid deterioration of the elastomeric compound, often in as little as a few days. Figure 138 is an example of o-ring failure due to weather and ozone cracking.

WEATHER \& OZONE CRACKING

Figure 138: Failure Due to Weather
\& Ozone Cracking

EXPLORING OTHER OPTIONS

```
"Though O-rings are ideal for a wide variety of applications, they are not the best solution to every design problem."
```

The savvy seal designer recognizes both the possible uses and inherent limitations of a given product. Though 0 -rings are ideal for a wide variety of applications, they are not the best solution to every design problem. Since trying to force an 0-ring to perform beyond its capabilities can only lead to failure, you will probably be faced from time to time with difficult or unusual situations that require you to consider other seal crosssections.

What follows is information on a handful of alternate seals that can retrofit directly into standard O-ring glands without the need for either redesign or remachining. Of course, each cross-section has both advantages and disadvantages, so the specific needs of your application will always dictate which one is best for you. Familiarity with your options, however, should make the choice somewhat easier.

LOBED SEALS

Also known as X-rings or Quad Ring® seals, four-lobed seals double the number of sealing surfaces found on traditional 0-rings. Used primarily in dynamic applications lobed seals require less squeeze than O-rings and thus generate less friction Thanks to their unique design, lobed seals also provide improved sealability and are more resistant to the twisting stresses that can lead to spiral failure. Be aware, however, that lobed seals are more expensive than O-rings. Figure 139 illustrates the cross-section of a four-lobed seal.

SQUARE RINGS

Also known as lathe-cut rings, square rings are circular sealing devices that utilize square rather than round cross-sections. Available in many elastomeric compounds, square rings are used primarily in static applications. In larger diameters (above 50 mm), square rings often cost less than 0 -rings. Keep in mind, however, that 0 -rings generally provide a more positive seal because the circular cross-sections allow for more concentrated unit loading. Figure 140 illustrates the cross-section of a square ring.

Figure 139: X-Ring

Figure 140: Square Ring

Figure 141: U-cup Seal

Figure 142: PTFE capped seal

U-CUPS

U-cups (usually made of rubber or polyurethane) are used in dynamic applications Because they are pressure-actuated lip type seals (rather than squeeze seals), they operate with lower break-out and running friction. They can also maintain smoother operate with lower break-out and running friction. They can also maintain smoother,
steadier movement. U-cups are unidirectional, however, so two seals will be required steadier movement. U-cups are unidirectional, however, so two seals will be required
for bidirectional sealing. U-cups are more expensive than O-rings. Figure 141 illustrates the cross-section of a U-cup.

PTFE CAPPED SEALS

Made of polytetrafluoroethylene (PTFE, better known as Teflon®), capped seals (also called slipper seals) are used in combination with standard O-rings. Because the PTFE cap drastically reduces break-out friction, capped seals are often used in applications where machinery undergoes prolonged idle periods. As added benefits, PTFE capped seals have outstanding chemical resistance and can operate across a wide temperature range (-184 to $+260^{\circ} \mathrm{C}$). Capped seals are available in two configurations: one which seals on the I.D. (the "kin" configuration) and one which seals on the O.D. (the "kex" configuration, see Figure 142).

EXPLORING OTHER OPTIONS

FLUOROPLASTIC-ENCAPSULATED O-RINGS

Unlike the other options highlighted in this section, fluoroplastic-encapsulated O-rings retain the same circular cross-section as standard O-rings (see Figure 145). They
feature a fluoroplastic jacket around a core material (such as Viton® or silicone). These expensive alternatives to elastomeric 0-rings are used as static seals in environments featuring harsh chemicals and high temperatures.

SPRING-ENERGIZED PTFE SEALS

Offering the highest performance among O-ring alternatives, spring-energized seals feature a PTFE (Teflon®) jacket uniformly energized by a spring made of stainless steel or Elgiloy®, as shown in Figure 146. In addition to being chemically inert (making it resistant to harsh environments), the PTFE jacket minimizes both break-out and running friction. The jacket's high shear modulus resists extrusion, and the stable cross-section resists spiraling. PTFE seals can also function across a wide temperature range. Springenergized PTFE seals are the most expensive of the alternatives outlined in this section.

Figure 143: Fluoroplastic-encapsulated 0-ring

Figure 144: Spring Energized PTFE Seal

ORDERING INFORMATION

ORDERING MADE EASY

> "We've made ordering O-rings as easy as specifying two characteristics: the size of the seal, and the seal material (or compound)."

O-rings are amazingly simple devices. Shouldn't ordering them be just as simple? We've made ordering 0 -rings as easy as specifying two characteristics: the size of the seal, and the seal material (or compound). Here's how it works:

SIZE

Standard imperial (inch) sizes are specified using the three-digit "dash numbers" defined in Aerospace Standard (AS) 568A (See 0-Ring Size Tables). Published by the Society of Automotive Engineers (SAE), AS 568A supersedes and cancels both AS 568 and Aerospace Recommended Practice (ARP) 568. When ordering standard sizes, all you need to specify is an AS 568A dash number (for example, AS 568A-011). Or, if you prefer, simply request an OR-011 seal. The "OR" is our designation for an O-ring.
For non-standard imperial sizes, please specify both the inside diameter (ID) and crosssection (W) (See Figure 145) in the following format: OR-ID x W. For example, OR-1.250 x .125 for a seal with a $1.250^{\prime \prime}$ ID and a $.125^{\prime \prime}$ W.
For metric sizes, please specify using the following format: OR-IDmm x Wmm. For example, OR-25mm x 3 mm .

COMPOUND

Compound information includes both the base polymer and the hardness. You may specify these in any of three ways:

1) Simply identify the compound using either its full name or its ASTM D 1418 designation (for example, nitrile or NBR) and the desired hardness (for example, 70 Shore A). NBR-70 is a 70 (Shore A) durometer nitrile.
2) Give us a compound number (if known) which notes both polymer and hardness. For example, a standard 70 (Shore A) durometer nitrile.
3) Provide an ASTM D 2000 / SAE J2O0 line call-out for the compound.

Other than the quantity you want, that's all we need!

Figure 145: O-ring Dimensions

O-RING SIZE TABLES

AS568A No.	Actual dimensions(mm)				Nominal Reference			Actual dimensions(inches)			
	I.D.	O.D.	Width	Tol	I.D.	O.D.	Width	I.D.	O.D.	Width	Tol
-001	0.74	$\pm .10$	1.02	$\pm .08$	1/32	3/32	1/32	. 029	$\pm .004$. 040	$\pm .003$
-0011/2	1.78	$\pm .10$	1.02	$\pm .08$	1/16	1/8	1/32	. 070	$\pm .004$. 040	$\pm .003$
-002	1.07	$\pm .10$	1.27	$\pm .08$	3/64	9/64	3/64	. 042	$\pm .004$. 050	$\pm .003$
-003	1.42	$\pm .10$	1.52	$\pm .08$	1/16	3/16	1/16	. 056	$\pm .004$. 060	$\pm .003$
-004	1.78	$\pm .13$	1.78	$\pm .08$	5/64	13/64	1/16	. 070	$\pm .005$. 070	$\pm .003$
-005	2.57	$\pm .13$	1.78	$\pm .08$	3/32	7/32	1/16	. 101	$\pm .005$. 070	$\pm .003$
-006	2.90	$\pm .13$	1.78	$\pm .08$	1/8	1/4	1/16	. 114	$\pm .005$. 070	$\pm .003$
-007	3.68	$\pm .13$	1.78	$\pm .08$	5/32	9/32	1/16	. 145	$\pm .005$. 070	$\pm .003$
-008	4.47	$\pm .13$	1.78	$\pm .08$	3/16	9/16	1/16	. 176	$\pm .005$. 070	$\pm .003$
-009	5.28	$\pm .13$	1.78	$\pm .08$	7/32	11/32	1/16	. 208	$\pm .005$. 070	$\pm .003$
-010	6.07	$\pm .13$	1.78	$\pm .08$	1/4	3/8	1/16	. 239	$\pm .005$. 070	$\pm .003$
-011	7.65	$\pm .13$	1.78	$\pm .08$	5/16	3/16	1/16	. 301	$\pm .005$. 070	$\pm .003$
-012	9.25	$\pm .13$	1.78	$\pm .08$	3/8	1/2	1/16	. 364	$\pm .005$. 070	$\pm .003$
-013	10.82	$\pm .13$	1.78	$\pm .08$	7/16	9/16	1/16	. 426	$\pm .005$. 070	$\pm .003$
-014	12.42	$\pm .13$	1.78	$\pm .08$	1/2	3/8	1/16	. 489	$\pm .005$. 070	$\pm .003$
-015	14.00	$\pm .18$	1.78	$\pm .08$	9/16	11/16	1/16	. 551	$\pm .007$. 070	$\pm .003$
-016	15.60	$\pm .23$	1.78	$\pm .08$	5/8	3/4	1/16	. 614	$\pm .009$. 070	$\pm .003$
-017	17.17	$\pm .23$	1.78	$\pm .08$	11/16	13/16	1/16	. 676	$\pm .009$. 070	$\pm .003$
-018	18.77	$\pm .23$	1.78	$\pm .08$	3/4	7/8	1/16	. 738	$\pm .009$. 070	$\pm .003$
-019	20.35	$\pm .23$	1.78	$\pm .08$	13/16	15/16	1/16	. 801	$\pm .009$. 070	$\pm .003$
-020	21.95	$\pm .23$	1.78	$\pm .08$	7/8	1	1/16	. 864	$\pm .009$. 070	$\pm .003$
-021	23.52	$\pm .23$	1.78	$\pm .08$	15/16	11/16	1/16	. 926	$\pm .009$. 070	$\pm .003$
-022	25.12	$\pm .25$	1.78	$\pm .08$	1	11/8	1/16	. 989	$\pm .010$. 070	$\pm .003$
-023	26.70	$\pm .25$	1.78	$\pm .08$	11/16	13/16	1/16	1.051	$\pm .010$. 070	$\pm .003$
-024	28.30	$\pm .25$	1.78	$\pm .08$	11/8	11/4	1/16	1.114	$\pm .010$. 070	$\pm .003$
-025	29.87	$\pm .28$	1.78	$\pm .08$	13/16	15/16	1/16	1.176	$\pm .011$. 070	$\pm .003$

O-RING SIZE TABLES

AS568A	Actual dimensions(mm)				Nominal Reference			Actual dimensions(inches)			
No.	I.D.	O.D.	Width	Tol	I.D.	O.D.	Width	I.D.	O.D.	Width	Tol
-026	31.47	$\pm .28$	1.78	$\pm .08$	11/4	13/8	1/16	1.239	$\pm .011$. 070	$\pm .003$
-027	33.05	$\pm .28$	1.78	$\pm .08$	15/16	17/16	1/16	1.301	$\pm .011$. 070	$\pm .003$
-028	34.65	$\pm .33$	1.78	$\pm .08$	13/8	11/2	1/16	1.364	$\pm .013$. 070	$\pm .003$
-029	37.82	$\pm .33$	1.78	$\pm .08$	$11 / 2$	15/8	1/16	1.489	$\pm .013$. 070	$\pm .003$
-030	41.00	$\pm .33$	1.78	$\pm .08$	15/8	13/4	1/16	1.614	$\pm .013$. 070	$\pm .003$
-031	44.17	$\pm .38$	1.78	$\pm .08$	13/4	17/8	1/16	1.739	$\pm .015$. 070	$\pm .003$
-032	47.35	$\pm .38$	1.78	$\pm .08$	17/8	2	1/16	1.864	$\pm .015$. 070	$\pm .003$
-033	50.52	$\pm .46$	1.78	$\pm .08$	2	21/8	1/16	1.989	$\pm .018$. 070	$\pm .003$
-034	53.70	$\pm .46$	1.78	$\pm .08$	$21 / 8$	21/4	1/16	2.114	$\pm .018$. 070	$\pm .003$
-035	56.87	$\pm .46$	1.78	$\pm .08$	21/4	$23 / 8$	1/16	2.239	$\pm .018$. 070	$\pm .003$
-036	60.05	$\pm .46$	1.78	$\pm .08$	$23 / 8$	21/2	1/16	2.364	$\pm .018$. 070	$\pm .003$
-037	63.22	$\pm .46$	1.78	$\pm .08$	21/2	$25 / 8$	1/16	2.489	$\pm .018$. 070	$\pm .003$
-038	66.40	$\pm .51$	1.78	$\pm .08$	$25 / 8$	23/4	1/16	2.614	$\pm .020$. 070	$\pm .003$
-039	69.57	$\pm .51$	1.78	$\pm .08$	$23 / 4$	27/8	1/16	2.739	$\pm .020$. 070	$\pm .003$
-040	72.75	$\pm .51$	1.78	$\pm .08$	$27 / 8$	3	1/16	2.864	$\pm .020$. 070	$\pm .003$
-041	75.92	$\pm .61$	1.78	$\pm .08$	3	$31 / 8$	1/16	2.989	$\pm .024$. 070	$\pm .003$
-042	82.27	$\pm .61$	1.78	$\pm .08$	$31 / 4$	$33 / 8$	1/16	3.239	$\pm . .32024$. 070	$\pm .003$
-043	88.62	$\pm .61$	1.78	$\pm .08$	$31 / 2$	$35 / 8$	1/16	3.489	$\pm .024$. 070	$\pm .003$
-044	94.97	$\pm .69$	1.78	$\pm .08$	$33 / 4$	$37 / 8$	1/16	3.739	$\pm .027$. 070	$\pm .003$
-045	101.32	$\pm .69$	1.78	$\pm .08$	4	$41 / 8$	1/16	3.989	$\pm .027$. 070	$\pm .003$
-046	107.67	$\pm .76$	1.78	$\pm .08$	$41 / 4$	$43 / 8$	1/16	4.239	$\pm .030$. 070	$\pm .003$
-047	114.02	$\pm .76$	1.78	$\pm .08$	$41 / 2$	$45 / 8$	1/16	4.489	$\pm .030$. 070	$\pm .003$
-048	120.37	$\pm .76$	1.78	$\pm .08$	$43 / 4$	$47 / 8$	1/16	4.739	$\pm .030$. 070	$\pm .003$
-049	126.72	$\pm .94$	1.78	$\pm .08$	5	51/8	1/16	4.989	$\pm .037$. 070	$\pm .003$
-050	133.07	$\pm .94$	1.78	$\pm .08$	$51 / 4$	$53 / 8$	1/16	5.239	$\pm .037$. 070	$\pm .003$

O-RING SIZE TABLES

AS568A	Actual dimensions(mm)				Nominal Reference			Actual dimensions(inches)			
No.	I.D.	O.D.	Width	Tol	I.D.	O.D.	Width	I.D.	O.D.	Width	Tol
-102	1.24	$\pm .13$	2.62	$\pm .08$	1/16	1/4	3/32	. 049	$\pm .005$. 103	$\pm .003$
-103	2.06	$\pm .13$	2.62	$\pm .08$	3/32	9/32	3/32	. 081	$\pm .005$. 103	$\pm .003$
-104	2.84	$\pm .13$	2.62	$\pm .08$	1/8	5/16	3/32	. 112	$\pm .005$. 103	$\pm .003$
-105	3.63	$\pm .13$	2.62	$\pm .08$	5/32	11/32	3/32	. 143	$\pm .005$. 103	$\pm .003$
-106	4.42	$\pm .13$	2.62	$\pm .08$	3/16	3/8	3/32	. 174	$\pm .005$. 103	$\pm .003$
-107	5.23	$\pm .13$	2.62	$\pm .08$	7/32	13/32	3/32	. 206	$\pm .005$. 103	$\pm .003$
-108	6.02	$\pm .13$	2.62	$\pm .08$	1/4	7/16	3/32	. 237	$\pm .005$. 103	$\pm .003$
-109	7.59	$\pm .13$	2.62	$\pm .08$	5/16	1/2	3/32	. 299	$\pm .005$. 103	$\pm .003$
-110	9.19	$\pm .13$	2.62	$\pm .08$	3/8	9/16	3/32	. 362	$\pm .005$. 103	$\pm .003$
-111	10.77	$\pm .13$	2.62	$\pm .08$	7/16	5/8	3/32	. 424	$\pm .005$. 103	$\pm .003$
-112	12.37	$\pm .13$	2.62	$\pm .08$	1/2	11/16	3/32	. 487	$\pm .005$. 103	$\pm .003$
-113	13.94	$\pm .18$	2.62	$\pm .08$	9/16	3/4	3/32	. 549	$\pm .005$. 103	$\pm .003$
-114	15.54	$\pm .23$	2.62	$\pm .08$	5/8	13/16	3/32	. 612	$\pm .009$. 103	$\pm .003$
-115	17.12	$\pm .23$	2.62	$\pm .08$	11/16	7/8	3/32	. 674	$\pm .009$. 103	$\pm .003$
-116	18.72	$\pm .23$	2.62	$\pm .08$	3/4	15/16	3/32	. 737	$\pm .009$. 103	$\pm .003$
-117	20.30	$\pm .25$	2.62	$\pm .08$	13/16	1	3/32	. 799	$\pm .010$. 103	$\pm .003$
-118	21.89	$\pm .25$	2.62	$\pm .08$	7/8	11/16	3/32	. 862	$\pm .010$. 103	$\pm .003$
-119	23.47	$\pm .25$	2.62	$\pm .08$	15/16	11/8	3/32	. 924	$\pm .010$. 103	$\pm .003$
-120	25.07	$\pm .25$	2.62	$\pm .08$	1	13/16	3/32	. 987	$\pm .010$. 103	$\pm .003$
-121	26.64	$\pm .25$	2.62	$\pm .08$	11/16	11/4	3/32	1.049	$\pm .010$. 103	$\pm .003$
-122	28.24	$\pm .25$	2.62	$\pm .08$	11/8	15/16	3/32	1.112	$\pm .010$. 103	$\pm .003$
-123	29.82	$\pm .30$	2.62	$\pm .08$	13/16	13/8	3/32	1.174	$\pm .012$. 103	$\pm .003$
-124	31.42	$\pm .30$	2.62	$\pm .08$	11/4	17/16	3/32	1.237	$\pm .012$. 103	$\pm .003$
-125	32.99	$\pm .30$	2.62	$\pm .08$	15/16	11/2	3/32	1.299	$\pm .012$. 103	$\pm .003$

O-RING SIZE TABLES

AS568A	Actual dimensions(mm)				Nominal Reference			Actual dimensions(inches)			
No.	I.D.	O.D.	Width	Tol	I.D.	O.D.	Width	I.D.	O.D.	Width	Tol
-126	34.59	$\pm .30$	2.62	$\pm .08$	13/8	19/16	3/32	1.362	$\pm .012$. 103	$\pm .003$
-127	36.17	$\pm .30$	2.62	$\pm .08$	17/16	15/8	3/32	1.424	$\pm .012$. 103	$\pm .003$
-128	37.77	$\pm .30$	2.62	$\pm .08$	11/2	111/16	3/32	1.487	$\pm .012$. 103	$\pm .003$
-129	39.34	$\pm .38$	2.62	$\pm .08$	19/16	13/4	3/32	1.549	$\pm .015$. 103	$\pm .003$
-130	40.94	$\pm .38$	2.62	$\pm .08$	15/8	113/16	3/32	1.612	$\pm .015$. 103	$\pm .003$
-131	42.52	$\pm .38$	2.62	$\pm .08$	111/16	17/8	3/32	1.674	$\pm .015$. 103	$\pm .003$
-132	44.12	$\pm .38$	2.62	$\pm .08$	13/4	115/16	3/32	1.737	$\pm .015$. 103	$\pm .003$
-133	45.69	$\pm .38$	2.62	$\pm .08$	113/16	2	3/32	1.799	$\pm .015$. 103	$\pm .003$
-134	47.29	$\pm .38$	2.62	$\pm .08$	17/8	21/16	3/32	1.862	$\pm .015$. 103	$\pm .003$
-135	48.90	$\pm .43$	2.62	$\pm .08$	115/16	$21 / 8$	3/32	1.925	$\pm .017$. 103	$\pm .003$
-136	50.47	$\pm .43$	2.62	$\pm .08$	2	23/16	3/32	1.987	$\pm .017$. 103	$\pm .003$
-137	52.07	$\pm .43$	2.62	$\pm .08$	$21 / 16$	$21 / 4$	3/32	2.050	$\pm .017$. 103	$\pm .003$
-138	53.64	$\pm .43$	2.62	$\pm .08$	$21 / 8$	25/16	3/32	2.112	$\pm .017$. 103	$\pm .003$
-139	55.25	$\pm .43$	2.62	$\pm .08$	23/16	23/8	3/32	2.175	$\pm .017$. 103	$\pm .003$
-140	56.82	$\pm .43$	2.62	$\pm .08$	$21 / 4$	27/16	3/32	2.237	$\pm .017$. 103	$\pm .003$
-141	58.42	$\pm .51$	2.62	$\pm .08$	25/16	$21 / 2$	3/32	2.300	$\pm .020$. 103	$\pm .003$
-142	59.99	$\pm .51$	2.62	$\pm .08$	$23 / 8$	29/16	3/32	2.362	$\pm .020$. 103	$\pm .003$
-143	61.60	$\pm .51$	2.62	$\pm .08$	27/16	$25 / 8$	3/32	2.425	$\pm .020$. 103	$\pm .003$
-144	63.17	$\pm .51$	2.62	$\pm .08$	$21 / 2$	211/16	3/32	2.487	$\pm .020$. 103	$\pm .003$
-145	64.77	$\pm .51$	2.62	$\pm .08$	$29 / 16$	23/4	3/32	2.550	$\pm .020$. 103	$\pm .003$
-146	66.34	$\pm .51$	2.62	$\pm .08$	$25 / 8$	$213 / 16$	3/32	2.612	$\pm .020$. 103	$\pm .003$
-147	67.95	$\pm .56$	2.62	$\pm .08$	211/16	27/8	3/32	2.675	$\pm .022$. 103	$\pm .003$
-148	69.52	$\pm .56$	2.62	$\pm .08$	$23 / 4$	$215 / 16$	3/32	2.737	$\pm .022$. 103	$\pm .003$
-149	71.12	$\pm .56$	2.62	$\pm .08$	215/16	3	3/32	2.800	$\pm .022$. 103	$\pm .003$
-150	72.69	$\pm .56$	2.62	$\pm .08$	$27 / 8$	$31 / 16$	3/32	2.862	$\pm .022$. 103	$\pm .003$

O-RING SIZE TABLES

AS568A	Actual dimensions(mm)				Nominal Reference			Actual dimensions(inches)			
No.	I.D.	O.D.	Width	Tol	I.D.	O.D.	Width	I.D.	O.D.	Width	Tol
-151	75.87	$\pm .61$	2.62	$\pm .08$	3	33/16	3/32	2.987	$\pm .024$. 103	$\pm .003$
-152	82.22	$\pm .61$	2.62	$\pm .08$	$31 / 4$	37/16	3/32	3.237	$\pm .024$. 103	$\pm .003$
-153	88.57	$\pm .61$	2.62	$\pm .08$	$31 / 2$	$311 / 16$	3/32	3.487	$\pm .024$. 103	$\pm .003$
-154	94.92	$\pm .71$	2.62	$\pm .08$	$33 / 4$	$315 / 16$	3/32	3.737	$\pm .028$. 103	$\pm .003$
-155	101.27	$\pm .71$	2.62	$\pm .08$	4	43/16	3/32	3.987	$\pm .028$. 103	$\pm .003$
-156	107.62	$\pm .76$	2.62	$\pm .08$	$41 / 4$	47/16	3/32	4.237	$\pm .030$. 103	$\pm .003$
-157	113.97	$\pm .76$	2.62	$\pm .08$	$41 / 2$	$411 / 16$	3/32	4.487	$\pm .030$. 103	$\pm .003$
-158	120.32	$\pm .76$	2.62	$\pm .08$	43/4	$415 / 16$	3/32	4.737	$\pm .030$. 103	$\pm .003$
-159	126.67	$\pm .89$	2.62	$\pm .08$	5	53/16	3/32	4.987	$\pm .035$. 103	$\pm .003$
-160	133.02	$\pm .89$	2.62	$\pm .08$	$51 / 4$	57/16	3/32	5.237	$\pm .035$. 103	$\pm .003$
-161	139.37	$\pm .89$	2.62	$\pm .08$	$51 / 2$	$511 / 16$	3/32	5.487	$\pm .035$. 103	$\pm .003$
-162	145.72	$\pm .89$	2.62	$\pm .08$	$53 / 4$	$515 / 16$	3/32	5.737	$\pm .035$. 103	$\pm .003$
-163	152.07	$\pm .89$	2.62	$\pm .08$	6	6.3/16	3/32	5.987	$\pm .035$. 103	$\pm .003$
-164	158.42	± 1.02	2.62	$\pm .08$	$61 / 4$	$67 / 16$	3/32	6.237	$\pm .040$. 103	$\pm .003$
-165	164.77	± 1.02	2.62	$\pm .08$	$61 / 2$	$611 / 16$	3/32	6.487	$\pm .040$. 103	$\pm .003$
-166	171.12	± 1.02	2.62	$\pm .08$	$63 / 4$	$615 / 16$	3/32	6.737	$\pm .040$. 103	$\pm .003$
-167	177.47	$\pm .102$	2.62	$\pm .08$	7	73/16	3/32	6.987	$\pm .040$. 103	$\pm .003$
-168	183.82	± 1.14	2.62	$\pm .08$	71/4	77/16	3/32	7.237	$\pm .045$. 103	$\pm .003$
-169	190.17	± 1.14	2.62	$\pm .08$	$71 / 2$	711/16	3/32	7.487	$\pm .045$. 103	$\pm .003$
-170	196.52	± 1.14	2.62	$\pm .08$	73/4	715/16	3/32	7.737	$\pm .045$. 103	$\pm .003$
-171	202.87	± 1.14	2.62	$\pm .08$	8	83/16	3/32	7.987	$\pm .045$. 103	$\pm .003$
-172	209.22	± 1.27	2.62	$\pm .08$	$81 / 4$	$87 / 16$	3/32	8.237	$\pm .050$. 103	$\pm .003$
-173	215.57	± 1.27	2.62	$\pm .08$	$81 / 2$	$811 / 16$	3/32	8.487	$\pm .050$. 103	$\pm .003$

O-RING SIZE TABLES

AS568A	Actual dimensions(mm)				Nominal Reference			Actual dimensions(inches)			
No.	I.D.	O.D.	Width	Tol	I.D.	O.D.	Width	I.D.	O.D.	Width	Tol
-174	221.92	± 1.27	2.62	$\pm .08$	$83 / 4$	$815 / 16$	3/32	8.737	$\pm .050$. 103	$\pm .003$
-175	228.27	± 1.27	2.62	$\pm .08$	9	93/16	3/32	8.987	$\pm .050$. 103	$\pm .003$
-176	234.62	± 1.40	2.62	$\pm .08$	$91 / 4$	$97 / 16$	3/32	9.237	$\pm .055$. 103	$\pm .003$
-177	240.97	± 1.40	2.62	$\pm .08$	$91 / 2$	$911 / 16$	3/32	9.487	$\pm .055$. 103	$\pm .003$
-178	247.32	± 1.40	2.62	$\pm .08$	$93 / 4$	$915 / 16$	3/32	9.737	$\pm .055$. 103	$\pm .003$
-201	4.34	$\pm .13$	3.53	$\pm .10$	3/16	7/16	1/8	. 171	$\pm .005$. 139	$\pm .004$
-202	5.94	$\pm .13$	3.53	$\pm .10$	1/4	1/2	1/8	. 234	$\pm .005$. 139	$\pm .004$
-203	7.52	$\pm .13$	3.53	$\pm .10$	5/16	9/16	1/8	. 296	$\pm .005$. 139	$\pm .004$
-204	9.12	$\pm .13$	3.53	$\pm .10$	3/8	5/8	1/8	. 359	$\pm .005$. 139	$\pm .004$
-205	10.69	$\pm .13$	3.53	$\pm .10$	7/16	11/16	1/8	. 421	$\pm .005$. 139	$\pm .004$
-206	12.29	$\pm .13$	3.53	$\pm .10$	1/2	3/4	1/8	. 484	$\pm .005$. 139	$\pm .004$
-207	13.87	$\pm .18$	3.53	$\pm .10$	9/16	13/16	1/8	. 546	$\pm .007$. 139	$\pm .004$
-208	15.47	$\pm .23$	3.53	$\pm .10$	5/8	7/8	1/8	. 609	$\pm .009$. 139	$\pm .004$
-209	17.04	$\pm .23$	3.53	$\pm .10$	11/16	15/16	1/8	. 671	$\pm .009$. 139	$\pm .004$
-210	18.64	$\pm .25$	3.53	$\pm .10$	3/4	1	1/8	. 734	$\pm .010$. 139	$\pm .004$
-211	20.22	$\pm .25$	3.53	$\pm .10$	13/16	11/16	1/8	. 796	$\pm .010$. 139	$\pm .004$
-212	21.82	$\pm .25$	3.53	$\pm .10$	7/8	11/8	1/8	. 859	$\pm .010$. 139	$\pm .004$
-213	23.39	$\pm .25$	3.53	$\pm .10$	15/16	11/16	1/8	. 921	$\pm .010$. 139	$\pm .004$
-214	24.99	$\pm .25$	3.53	$\pm .10$	1	11/4	1/8	. 984	$\pm .010$. 139	$\pm .004$
-215	26.57	$\pm .25$	3.53	$\pm .10$	11/16	15/16	1/8	1.046	$\pm .010$. 139	$\pm .004$
-216	28.17	$\pm .30$	3.53	$\pm .10$	11/8	13/8	1/8	1.109	$\pm .012$. 139	$\pm .004$
-217	29.74	$\pm .30$	3.53	$\pm .10$	13/16	17/16	1/8	1.171	$\pm .012$. 139	$\pm .004$
-218	31.34	$\pm .30$	3.53	$\pm .10$	11/4	11/2	1/8	1.234	$\pm .012$. 139	$\pm .004$
-219	32.92	$\pm .30$	3.53	$\pm .10$	15/16	19/16	1/8	1.296	$\pm .012$. 139	$\pm .004$
-220	34.52	$\pm .30$	3.53	$\pm .10$	13/8	15/8	1/8	1.359	$\pm .012$. 139	$\pm .004$

O-RING SIZE TABLES

AS568A	Actual dimensions(mm)				Nominal Reference			Actual dimensions(inches)			
No.	I.D.	O.D.	Width	Tol	I.D.	O.D.	Width	I.D.	O.D.	Width	Tol
-221	36.09	$\pm .30$	3.53	$\pm .10$	17/16	111/16	1/8	1.421	$\pm .012$. 139	$\pm .004$
-222	37.69	$\pm .38$	3.53	$\pm .10$	11/2	13/4	1/8	1.484	$\pm .015$. 139	$\pm .004$
-223	40.87	$\pm .38$	3.53	$\pm .10$	15/8	17/8	1/8	1.609	$\pm .015$. 139	$\pm .004$
-224	44.04	$\pm .38$	3.53	$\pm .10$	13/4	2	1/8	1.734	$\pm .015$. 139	$\pm .004$
-225	47.22	$\pm .46$	3.53	$\pm .10$	17/8	$21 / 8$	1/8	1.859	$\pm .018$. 139	$\pm .004$
-226	50.39	$\pm .46$	3.53	$\pm .10$	2	$21 / 4$	1/8	1.984	$\pm .018$. 139	$\pm .004$
-227	53.57	$\pm .46$	3.53	$\pm .10$	$21 / 8$	$23 / 8$	1/8	2.109	$\pm .018$. 139	$\pm .004$
-228	56.74	$\pm .51$	3.53	$\pm .10$	21/4	$21 / 2$	1/8	2.234	$\pm .020$. 139	$\pm .004$
-229	59.92	$\pm .51$	3.53	$\pm .10$	$23 / 8$	$25 / 8$	1/8	2.359	$\pm .020$. 139	$\pm .004$
-230	63.09	$\pm .51$	3.53	$\pm .10$	21/2	$23 / 4$	1/8	2.484	$\pm .020$. 139	$\pm .004$
-231	66.27	$\pm .51$	3.53	$\pm .10$	$25 / 8$	27/8	1/8	2.609	$\pm .020$. 139	$\pm .004$
-232	69.44	$\pm .61$	3.53	$\pm .10$	$23 / 4$	3	1/8	2.734	$\pm .024$. 139	$\pm .004$
-233	72.62	$\pm .61$	3.53	$\pm .10$	$27 / 8$	$31 / 8$	1/8	2.859	$\pm .024$. 139	$\pm .004$
-234	75.79	$\pm .61$	3.53	$\pm .10$	3	$31 / 4$	1/8	2.984	$\pm .024$. 139	$\pm .004$
-235	78.97	$\pm .61$	3.53	$\pm .10$	$31 / 8$	$33 / 8$	1/8	3.109	$\pm .024$. 139	$\pm .004$
-236	82.14	$\pm .61$	3.53	$\pm .10$	$31 / 4$	$31 / 2$	1/8	3.234	$\pm .024$. 139	$\pm .004$
-237	85.32	$\pm .61$	3.53	$\pm .10$	$33 / 8$	$35 / 8$	1/8	3.359	$\pm .024$. 139	$\pm .004$
-238	88.49	$\pm .61$	3.53	$\pm .10$	$31 / 2$	$33 / 4$	1/8	3.484	$\pm .024$. 139	$\pm .004$
-239	91.67	$\pm .71$	3.53	$\pm .10$	$35 / 8$	$37 / 8$	1/8	3.609	$\pm .028$. 139	$\pm .004$
-240	94.84	$\pm .71$	3.53	$\pm .10$	$33 / 4$	4	1/8	3.734	$\pm .028$. 139	$\pm .004$
-241	98.02	$\pm .71$	3.53	$\pm .10$	$37 / 8$	$41 / 8$	1/8	3.859	$\pm .028$. 139	$\pm .004$
-242	101.19	$\pm .71$	3.53	$\pm .10$	4	$41 / 4$	1/8	3.984	$\pm .028$. 139	$\pm .004$
-243	104.37	$\pm .71$	3.53	$\pm .10$	$41 / 8$	$43 / 8$	1/8	4.109	$\pm .028$. 139	$\pm .004$
-244	107.54	$\pm .76$	3.53	$\pm .10$	$41 / 4$	$41 / 2$	1/8	4.234	$\pm .030$. 139	$\pm .004$
-245	110.72	$\pm .76$	3.53	$\pm .10$	$43 / 8$	$45 / 8$	1/8	4.359	$\pm .030$. 139	$\pm .004$

O-RING SIZE TABLES

AS568A	Actual dimensions(mm)				Nominal Reference			Actual dimensions(inches)			
No.	I.D.	O.D.	Width	Tol	I.D.	O.D.	Width	I.D.	O.D.	Width	Tol
-246	113.89	$\pm .76$	3.53	$\pm .10$	$41 / 2$	43/4	1/8	4.484	$\pm .030$. 139	$\pm .004$
-247	117.07	$\pm .76$	3.53	$\pm .10$	$45 / 8$	47/8	1/8	4.609	$\pm .030$. 139	$\pm .004$
-248	120.24	$\pm .76$	3.53	$\pm .10$	$43 / 4$	5	1/8	4.734	$\pm .030$. 139	$\pm .004$
-249	123.42	$\pm .89$	3.53	$\pm .10$	47/8	$51 / 8$	1/8	4.859	$\pm .035$. 139	$\pm .004$
-250	126.59	$\pm .89$	3.53	$\pm .10$	5	$51 / 4$	1/8	4.984	$\pm .035$. 139	$\pm .004$
-251	129.77	$\pm .89$	3.53	$\pm .10$	51/8	53/8	1/8	5.109	$\pm .035$. 139	$\pm .004$
-252	132.94	$\pm .89$	3.53	$\pm .10$	51/4	51/2	1/8	5.234	$\pm .035$. 139	$\pm .004$
-253	136.12	$\pm .89$	3.53	$\pm .10$	53/8	5/8	1/8	5.359	$\pm .035$. 139	$\pm .004$
-254	139.29	$\pm .89$	3.53	$\pm .10$	51/2	53/4	1/8	5.484	$\pm .035$. 139	$\pm .004$
-255	142.47	$\pm .89$	3.53	$\pm .10$	$55 / 8$	57/8	1/8	5.609	$\pm .035$. 139	$\pm .004$
-256	145.64	$\pm .89$	3.53	$\pm .10$	53/4	6	1/8	5.734	$\pm .035$. 139	$\pm .004$
-257	148.82	$\pm .89$	3.53	$\pm .10$	57/8	$61 / 8$	1/8	5.859	$\pm .035$. 139	$\pm .004$
-258	151.99	$\pm .89$	3.53	$\pm .10$	6	$61 / 4$	1/8	5.984	$\pm .035$. 139	$\pm .004$
-259	158.34	± 1.02	3.53	$\pm .10$	$61 / 4$	$61 / 2$	1/8	6.234	$\pm .040$. 139	$\pm .004$

O-RING SIZE TABLES

AS568A	Actual dimensions(mm)				Nominal Reference			Actual dimensions(inches)			
No.	I.D.	O.D.	Width	Tol	I.D.	O.D.	Width	I.D.	O.D.	Width	Tol
-260	164.69	± 1.02	3.53	$\pm .10$	$61 / 2$	63/4	1/8	6.484	$\pm .040$. 139	$\pm .004$
-261	171.04	± 1.02	3.53	$\pm .10$	$63 / 4$	7	1/8	6.734	$\pm .040$. 139	$\pm .004$
-262	177.39	± 1.02	3.53	$\pm .10$	7	71/4	1/8	6.984	$\pm .040$. 139	$\pm .004$
-263	183.74	± 1.14	3.53	$\pm .10$	71/4	71/2	1/8	7.234	$\pm .045$. 139	$\pm .004$
-264	190.09	± 1.14	3.53	$\pm .10$	71/2	73/4	1/8	7.484	$\pm .045$. 139	$\pm .004$
-265	196.44	± 1.14	3.53	$\pm .10$	73/4	8	1/8	7.734	$\pm .045$. 139	$\pm .004$
-266	202.79	± 1.14	3.53	$\pm .10$	8	$81 / 4$	1/8	7.984	$\pm .045$. 139	$\pm .004$
-267	209.14	± 1.27	3.53	$\pm .10$	$81 / 4$	$81 / 2$	1/8	8.234	$\pm .050$. 139	$\pm .004$
-268	215.49	± 1.27	3.53	$\pm .10$	$81 / 2$	83/4	1/8	8.484	$\pm .050$. 139	$\pm .004$
-269	221.84	± 1.27	3.53	$\pm .10$	$83 / 4$	9	1/8	8.734	$\pm .050$. 139	$\pm .004$
-270	228.19	± 1.27	3.53	$\pm .10$	9	$91 / 4$	1/8	8.984	$\pm .050$. 139	$\pm .004$
-271	234.54	± 1.40	3.53	$\pm .10$	$91 / 4$	91/2	1/8	9.234	$\pm .055$. 139	$\pm .004$
-272	240.89	± 1.40	3.53	$\pm .10$	$91 / 2$	93/4	1/8	9.484	$\pm .055$. 139	$\pm .004$
-273	247.24	± 1.40	3.53	$\pm .10$	$93 / 4$	10	1/8	9.734	$\pm .055$. 139	$\pm .004$
-274	253.59	± 1.40	3.53	$\pm .10$	10	$101 / 4$	1/8	9.984	$\pm .055$. 139	$\pm .004$
-275	266.29	± 1.40	3.53	$\pm .10$	$101 / 2$	$103 / 4$	1/8	10.484	$\pm .055$. 139	$\pm .004$
-276	278.99	± 1.65	3.53	$\pm .10$	11	$111 / 4$	1/8	10.984	$\pm .065$. 139	$\pm .004$
-277	291.69	± 1.65	3.53	$\pm .10$	$111 / 2$	$113 / 4$	1/8	11.484	$\pm .065$. 139	$\pm .004$
-278	304.39	± 1.65	3.53	$\pm .10$	12	$121 / 4$	1/8	11.984	$\pm .065$. 139	$\pm .004$
-279	329.79	± 1.65	3.53	$\pm .10$	13	$131 / 4$	1/8	12.984	$\pm .065$. 139	$\pm .004$
-280	355.19	± 1.65	3.53	$\pm .10$	14	141/4	1/8	13.984	$\pm .065$. 139	$\pm .004$
-281	380.59	± 1.65	3.53	$\pm .10$	15	151/4	1/8	14.984	$\pm .065$. 139	$\pm .004$
-282	405.26	± 1.91	3.53	$\pm .10$	16	161/4	1/8	15.955	$\pm .075$. 139	$\pm .004$
-283	430.66	± 2.03	3.53	$\pm .10$	17	171/4	1/8	16.955	$\pm .080$. 139	$\pm .004$
-284	456.06	± 2.16	3.53	$\pm .10$	18	$181 / 4$	1/8	17.955	$\pm .085$. 139	$\pm .004$

O-RING SIZE TABLES

AS568A	Actual dimensions(mm)				Nominal Reference			Actual dimensions(inches)			
No.	I.D.	O.D.	Width	Tol	I.D.	O.D.	Width	I.D.	O.D.	Width	Tol
-309	10.46	$\pm .13$	5.33	$\pm .13$	7/16	13/16	3/16	. 412	$\pm .005$. 210	$\pm .005$
-310	12.07	$\pm .13$	5.33	$\pm .13$	1/2	7/8	3/16	. 475	$\pm .005$. 210	$\pm .005$
-311	13.64	$\pm .18$	5.33	$\pm .13$	9/16	15/16	3/16	. 537	$\pm .007$. 210	$\pm .005$
-312	15.24	$\pm .23$	5.33	$\pm .13$	3/8	1	3/16	. 600	$\pm .009$. 210	$\pm .005$
-313	16.81	$\pm .23$	5.33	$\pm .13$	11/16	11/16	3/16	. 662	$\pm .009$. 210	$\pm .005$
-314	18.42	$\pm .25$	5.33	$\pm .13$	3/4	11/8	3/16	. 725	$\pm .010$. 210	$\pm .005$
-315	19.99	$\pm .25$	5.33	$\pm .13$	13/16	13/16	3/16	. 787	$\pm .010$. 210	$\pm .005$
-316	21.59	$\pm .25$	5.33	$\pm .13$	7/8	11/4	3/16	. 850	$\pm .010$. 210	$\pm .005$
-317	23.16	$\pm .25$	5.33	$\pm .13$	15/16	15/16	3/16	. 912	$\pm .010$. 210	$\pm .005$
-318	24.77	$\pm .25$	5.33	$\pm .13$	1	13/8	3/16	. 975	$\pm .010$. 210	$\pm .005$
-319	26.34	$\pm .25$	5.33	$\pm .13$	11/16	17/16	3/16	1.037	$\pm .010$. 210	$\pm .005$
-320	27.94	$\pm .30$	5.33	$\pm .13$	11/8	11/2	3/16	1.100	$\pm .012$. 210	$\pm .005$
-321	29.51	$\pm .30$	5.33	$\pm .13$	13/16	19/16	3/16	1.162	$\pm .012$. 210	$\pm .005$
-322	31.12	$\pm .30$	5.33	$\pm .13$	11/4	15/8	3/16	1.225	$\pm .012$. 210	$\pm .005$
-323	32.69	$\pm .30$	5.33	$\pm .13$	15/16	111/16	3/16	1.287	$\pm .012$. 210	$\pm .005$
-324	34.29	$\pm .30$	5.33	$\pm .13$	13/8	13/4	3/16	1.350	$\pm .012$. 210	$\pm .005$
-325	37.47	$\pm .38$	5.33	$\pm .13$	11/2	17/8	3/16	1.475	$\pm .015$. 210	$\pm .005$
-326	40.64	$\pm .38$	5.33	$\pm .13$	15/8	2	3/16	1.600	$\pm .015$. 210	$\pm .005$
-327	43.82	$\pm .38$	5.33	$\pm .13$	13/4	$21 / 8$	3/16	1.725	$\pm .015$. 210	$\pm .005$
-328	46.99	$\pm .38$	5.33	$\pm .13$	17/8	$21 / 4$	3/16	1.850	$\pm .015$. 210	$\pm .005$
-329	50.17	$\pm .46$	5.33	$\pm .13$	2	$23 / 8$	3/16	1.975	$\pm .018$. 210	$\pm .005$
-330	53.34	$\pm .46$	5.33	$\pm .13$	21/8	$21 / 2$	3/16	2.100	$\pm .018$. 210	$\pm .005$

O-RING SIZE TABLES

AS568A	Actual dimensions(mm)				Nominal Reference			Actual dimensions(inches)			
No.	I.D.	O.D.	Width	Tol	I.D.	O.D.	Width	I.D.	O.D.	Width	Tol
-331	56.52	$\pm .46$	5.33	$\pm .13$	21/4	$25 / 8$	3/16	2.225	$\pm .018$. 210	$\pm .005$
-332	59.69	$\pm .46$	5.33	$\pm .13$	$23 / 8$	23/4	3/16	2.350	$\pm .018$. 210	$\pm .005$
-333	62.87	$\pm .51$	5.33	$\pm .13$	21/2	$27 / 8$	3/16	2.475	$\pm .020$. 210	$\pm .005$
-334	66.04	$\pm .51$	5.33	$\pm .13$	25/8	3	3/16	2.600	$\pm .020$. 210	$\pm .005$
-335	69.22	$\pm .51$	5.33	$\pm .13$	23/4	$31 / 8$	3/16	2.725	$\pm .020$. 210	$\pm .005$
-336	72.39	$\pm .51$	5.33	$\pm .13$	27/8	$31 / 4$	3/16	2.850	$\pm .020$. 210	$\pm .005$
-337	75.57	$\pm .61$	5.33	$\pm .13$	3	$33 / 8$	3/16	2.975	$\pm .024$. 210	$\pm .005$
-338	78.74	$\pm .61$	5.33	$\pm .13$	$31 / 8$	$31 / 2$	3/16	3.100	$\pm .024$. 210	$\pm .005$
-339	81.92	$\pm .61$	5.33	$\pm .13$	$31 / 4$	$35 / 8$	3/16	3.225	$\pm .024$. 210	$\pm .005$
-340	85.09	$\pm .61$	5.33	$\pm .13$	$33 / 8$	$33 / 4$	3/16	3.350	$\pm .024$. 210	$\pm .005$
-341	88.27	$\pm .61$	5.33	$\pm .13$	$31 / 2$	$37 / 8$	3/16	3.475	$\pm .024$. 210	$\pm .005$
-342	91.44	$\pm .71$	5.33	$\pm .13$	$35 / 8$	4	3/16	3.600	$\pm .028$. 210	$\pm .005$
-343	94.62	$\pm .71$	5.33	$\pm .13$	$33 / 4$	$41 / 8$	3/16	3.725	$\pm .028$. 210	$\pm .005$
-344	97.79	$\pm .71$	5.33	$\pm .13$	$37 / 8$	$41 / 4$	3/16	3.850	$\pm .028$. 210	$\pm .005$
-345	100.97	$\pm .71$	5.33	$\pm .13$	4	$43 / 8$	3/16	3.975	$\pm .028$. 210	$\pm .005$
-346	104.14	$\pm .71$	5.33	$\pm .13$	$41 / 8$	$41 / 2$	3/16	4.100	$\pm .028$. 210	$\pm .005$
-347	107.32	$\pm .76$	5.33	$\pm .13$	$41 / 4$	$45 / 8$	3/16	4.225	$\pm .030$. 210	$\pm .005$

O-RING SIZE TABLES

AS568A	Actual dimensions(mm)				Nominal Reference			Actual dimensions(inches)			
No.	I.D.	O.D.	Width	Tol	I.D.	O.D.	Width	I.D.	O.D.	Width	Tol
-348	110.49	$\pm .76$	5.33	$\pm .13$	$43 / 8$	43/4	3/16	4.350	$\pm .030$. 210	$\pm .005$
-349	113.67	$\pm .76$	5.33	$\pm .13$	$41 / 2$	47/8	3/16	4.475	$\pm .030$. 210	$\pm .005$
-350	116.84	$\pm .76$	5.33	$\pm .13$	$45 / 8$	5	3/16	4.600	$\pm .030$. 210	$\pm .005$
-351	120.02	$\pm .76$	5.33	$\pm .13$	$43 / 4$	51/8	3/16	4.725	$\pm .030$. 210	$\pm .005$
-352	123.19	$\pm .76$	5.33	$\pm .13$	47/8	51/4	3/16	4.850	$\pm .030$. 210	$\pm .005$
-353	126.37	$\pm .94$	5.33	$\pm .13$	5	$53 / 8$	3/16	4.975	$\pm .037$. 210	$\pm .005$
-354	129.54	$\pm .94$	5.33	$\pm .13$	51/8	$51 / 2$	3/16	5.100	$\pm .037$. 210	$\pm .005$
-355	132.72	$\pm .94$	5.33	$\pm .13$	$51 / 4$	$55 / 8$	3/16	5.225	$\pm .037$. 210	$\pm .005$
-356	135.89	$\pm .94$	5.33	$\pm .13$	53/8	53/4	3/16	5.350	$\pm .037$. 210	$\pm .005$
-357	139.07	$\pm .94$	5.33	$\pm .13$	$51 / 2$	$57 / 8$	3/16	5.475	$\pm .037$. 210	$\pm .005$
-358	142.24	$\pm .94$	5.33	$\pm .13$	$55 / 8$	6	3/16	5.600	$\pm .037$. 210	$\pm .005$
-359	145.42	$\pm .94$	5.33	$\pm .13$	$53 / 4$	$61 / 8$	3/16	5.725	$\pm .037$. 210	$\pm .005$
-360	148.59	$\pm .94$	5.33	$\pm .13$	57/8	$61 / 4$	3/16	5.850	$\pm .037$. 210	$\pm .005$
-361	151.77	$\pm .94$	5.33	$\pm .13$	6	$63 / 8$	3/16	5.975	$\pm .037$. 210	$\pm .005$
-362	158.12	± 1.02	5.33	$\pm .13$	$61 / 4$	$65 / 8$	3/16	6.225	$\pm .040$. 210	$\pm .005$
-363	164.47	± 1.02	5.33	$\pm .13$	$61 / 2$	$67 / 8$	3/16	6.475	$\pm .040$. 210	$\pm .005$
-364	170.82	± 1.02	5.33	$\pm .13$	$63 / 4$	71/8	3/16	6.725	$\pm .040$. 210	$\pm .005$
-365	177.17	± 1.02	5.33	$\pm .13$	7	$73 / 8$	3/16	6.975	$\pm .040$. 210	$\pm .005$
-366	183.52	± 1.14	5.33	$\pm .13$	71/4	75/8	3/16	7.225	$\pm .045$. 210	$\pm .005$
-367	189.87	± 1.14	5.33	$\pm .13$	$71 / 2$	77/8	3/16	7.475	$\pm .045$. 210	$\pm .005$
-368	196.22	± 1.14	5.33	$\pm .13$	73/4	$81 / 8$	3/16	7.725	$\pm .045$. 210	$\pm .005$
-369	202.57	± 1.14	5.33	$\pm .13$	8	$83 / 8$	3/16	7.975	$\pm .045$. 210	$\pm .005$
-370	208.92	± 1.27	5.33	$\pm .13$	$81 / 4$	$85 / 8$	3/16	8225	$\pm .050$. 210	$\pm .005$

O-RING SIZE TABLES

AS568A	Actual dimensions(mm)				Nominal Reference			Actual dimensions(inches)			
No.	I.D.	O.D.	Width	Tol	I.D.	O.D.	Width	I.D.	O.D.	Width	Tol
-371	215.27	± 1.27	5.33	$\pm .13$	$81 / 2$	$87 / 8$	3/16	8.475	$\pm .050$. 210	$\pm .005$
-372	221.62	± 1.27	5.33	$\pm .13$	83/4	$91 / 8$	3/16	8.725	$\pm .050$. 210	$\pm .005$
-373	227.97	± 1.27	5.33	$\pm .13$	9	$93 / 8$	3/16	8.975	$\pm .050$. 210	$\pm .005$
-374	234.32	± 1.40	5.33	$\pm .13$	$91 / 4$	95/8	3/16	9.225	$\pm .055$. 210	$\pm .005$
-375	240.67	± 1.40	5.33	$\pm .13$	$91 / 2$	$87 / 8$	3/16	9.475	$\pm .055$. 210	$\pm .005$
-376	247.02	± 1.40	5.33	$\pm .13$	93/4	$101 / 8$	3/16	9.725	$\pm .055$. 210	$\pm .005$
-377	253.37	± 1.40	5.33	$\pm .13$	10	$103 / 8$	3/16	9.975	$\pm .055$. 210	$\pm .005$
-378	266.07	± 1.52	5.33	$\pm .13$	$101 / 2$	$107 / 8$	3/16	10.475	$\pm .060$. 210	$\pm .005$
-379	278.77	± 1.52	5.33	$\pm .13$	11	$113 / 8$	3/16	10.975	$\pm .060$. 210	$\pm .005$
-380	291.47	± 1.65	5.33	$\pm .13$	$111 / 2$	$117 / 8$	3/16	11.475	$\pm .065$. 210	$\pm .005$
-381	304.17	± 1.65	5.33	$\pm .13$	12	$123 / 8$	3/16	11.975	$\pm .065$. 210	$\pm .005$
-382	329.57	± 1.65	5.33	$\pm .13$	13	133/8	3/16	12.975	$\pm .065$. 210	$\pm .005$
-383	354.97	± 1.78	5.33	$\pm .13$	14	$143 / 8$	3/16	13.975	$\pm .070$. 210	$\pm .005$
-384	380.37	± 1.78	5.33	$\pm .13$	15	$153 / 8$	3/16	14.975	$\pm .070$. 210	$\pm .005$
-385	405.26	± 1.91	5.33	$\pm .13$	16	$163 / 8$	3/16	15.955	$\pm .075$. 210	$\pm .005$
-386	430.66	± 2.03	5.33	$\pm .13$	17	$173 / 8$	3/16	16.955	$\pm .080$. 210	$\pm .005$
-387	456.06	± 2.16	5.33	$\pm .13$	18	$183 / 8$	3/16	17.955	$\pm .085$. 210	$\pm .005$
-388	481.41	± 2.29	5.33	$\pm .13$	19	$193 / 8$	3/16	18.955	$\pm .090$. 210	$\pm .005$
-389	506.81	± 2.41	5.33	$\pm .13$	20	$203 / 8$	3/16	19.955	$\pm .095$. 210	$\pm .005$
-390	532.21	± 2.41	5.33	$\pm .13$	21	$213 / 8$	3/16	20.955	$\pm .095$. 210	$\pm .005$

O-RING SIZE TABLES

AS568A	Actual dimensions(mm)				Nominal Reference			Actual dimensions(inches)			
No.	I.D.	O.D.	Width	Tol	I.D.	O.D.	Width	I.D.	O.D.	Width	Tol
-391	557.61	± 2.54	5.33	$\pm .13$	22	$223 / 8$	3/16	21.955	$\pm .100$. 210	$\pm .005$
-392	582.68	± 2.67	5.33	$\pm .13$	23	$233 / 8$	3/16	22.940	$\pm .105$. 210	$\pm .005$
-393	608.08	± 2.79	5.33	$\pm .13$	24	243/8	3/16	23.940	$\pm .110$. 210	$\pm .005$
-394	633.48	± 2.92	5.33	$\pm .13$	25	$253 / 8$	3/16	24.940	$\pm .115$. 210	$\pm .005$
-395	658.88	± 3.05	5.33	$\pm .13$	26	263/8	3/16	25.940	$\pm .120$. 210	$\pm .005$
-425	113.67	$\pm .84$	6.99	$\pm .15$	$41 / 2$	5	1/4	4.475	$\pm .033$. 275	$\pm .006$
-426	116.84	$\pm .84$	6.99	$\pm .15$	$45 / 8$	$51 / 8$	1/4	4.600	$\pm .033$. 275	$\pm .006$
-427	120.02	$\pm .84$	6.99	$\pm .15$	43/4	$51 / 4$	1/4	4.725	$\pm .033$. 275	$\pm .006$
-428	123.19	$\pm .84$	6.99	$\pm .15$	47/8	$53 / 8$	1/4	4.850	$\pm .033$. 275	$\pm .006$
-429	126.37	$\pm .94$	6.99	$\pm .15$	5	$51 / 2$	1/4	4.975	$\pm .037$. 275	$\pm .006$
-430	129.54	$\pm .94$	6.99	$\pm .15$	51/8	$55 / 8$	1/4	5.100	$\pm .037$. 275	$\pm .006$
-431	132.72	$\pm .94$	6.99	$\pm .15$	51/4	$53 / 4$	1/4	5.225	$\pm .037$. 275	$\pm .006$
-432	135.89	$\pm .94$	6.99	$\pm .15$	$53 / 8$	$57 / 8$	1/4	5.350	$\pm .037$. 275	$\pm .006$
-433	139.07	$\pm .94$	6.99	$\pm .15$	$51 / 2$	6	1/4	5.475	$\pm .037$. 275	$\pm .006$
-434	142.24	$\pm .94$	6.99	$\pm .15$	$55 / 8$	$61 / 8$	1/4	5.600	$\pm .037$. 275	$\pm .006$
-435	145.42	$\pm .94$	6.99	$\pm .15$	53/4	$61 / 4$	1/4	5.725	$\pm .037$. 275	$\pm .006$
-436	148.59	$\pm .94$	6.99	$\pm .15$	57/8	$63 / 8$	1/4	5.850	$\pm .037$. 275	$\pm .006$
-437	151.77	$\pm .94$	6.99	$\pm .15$	6	$61 / 2$	1/4	5.975	$\pm .037$. 275	$\pm .006$
-438	158.12	± 1.02	6.99	$\pm .15$	$61 / 4$	$63 / 4$	1/4	6.225	$\pm .040$. 275	$\pm .006$
-439	164.47	± 1.02	6.99	$\pm .15$	$61 / 2$	7	1/4	6.475	$\pm .040$. 275	$\pm .006$
-440	170.82	± 1.02	6.99	$\pm .15$	$63 / 4$	71/4	1/4	6.725	$\pm .040$. 275	$\pm .006$
-441	177.17	± 1.02	6.99	$\pm .15$	7	71/2	1/4	6.975	$\pm .040$. 275	$\pm .006$

O-RING SIZE TABLES

AS568A	Actual dimensions(mm)				Nominal Reference			Actual dimensions(inches)			
No.	I.D.	O.D.	Width	Tol	I.D.	O.D.	Width	I.D.	O.D.	Width	Tol
-442	183.52	± 1.14	6.99	$\pm .15$	71/4	73/4	1/4	7.225	$\pm .045$. 275	$\pm .006$
-443	189.87	± 1.14	6.99	$\pm .15$	71/2	8	1/4	7.475	$\pm .045$. 275	$\pm .006$
-444	196.22	± 1.14	6.99	$\pm .15$	73/4	$81 / 4$	1/4	7.725	$\pm .045$. 275	$\pm .006$
-445	202.57	± 1.14	6.99	$\pm .15$	8	$81 / 2$	1/4	7.975	$\pm .045$. 275	$\pm .006$
-446	215.27	± 1.40	6.99	$\pm .15$	$81 / 2$	9	1/4	8.475	$\pm .055$. 275	$\pm .006$
-447	227.97	± 1.40	6.99	$\pm .15$	9	$91 / 2$	1/4	8.975	$\pm .055$. 275	$\pm .006$
-448	240.67	± 1.40	6.99	$\pm .15$	$91 / 2$	10	1/4	9.475	$\pm .055$. 275	$\pm .006$
-449	253.37	± 1.40	6.99	$\pm .15$	10	$101 / 2$	1/4	9.975	$\pm .055$. 275	$\pm .006$
-450	266.07	± 1.52	6.99	$\pm .15$	$101 / 2$	11	1/4	10.475	$\pm .060$. 275	$\pm .006$
-451	278.77	± 1.52	6.99	$\pm .15$	11	11 1/2	1/4	10.975	$\pm .060$. 275	$\pm .006$
-452	291.47	± 1.52	6.99	$\pm .15$	$111 / 2$	12	1/4	11.475	$\pm .060$. 275	$\pm .006$
-453	304.17	± 1.52	6.99	$\pm .15$	12	$121 / 2$	1/4	11.975	$\pm .060$. 275	$\pm .006$
-454	316.87	± 1.52	6.99	$\pm .15$	$121 / 2$	13	1/4	12.475	$\pm .060$. 275	$\pm .006$
-455	329.57	± 1.52	6.99	$\pm .15$	13	$131 / 2$	1/4	12.975	$\pm .060$. 275	$\pm .006$
-456	342.27	± 1.78	6.99	$\pm .15$	$131 / 2$	14	1/4	13.475	$\pm .070$. 275	$\pm .006$
-457	354.97	± 1.78	6.99	$\pm .15$	14	$141 / 2$	1/4	13.975	$\pm .070$. 275	$\pm .006$
-458	367.67	± 1.78	6.99	$\pm .15$	$141 / 2$	15	1/4	14.475	$\pm .070$. 275	$\pm .006$
-459	380.37	$\pm .1 .78$	6.99	$\pm .15$	15	151/2	1/4	14.975	$\pm .070$. 275	$\pm .006$
-460	393.07	± 1.78	6.99	$\pm .15$	$151 / 2$	16	1/4	15.475	$\pm .070$. 275	$\pm .006$

O-RING SIZE TABLES

AS568A	Actual dimensions(mm)				Nominal Reference			Actual dimensions(inches)			
No.	I.D.	O.D.	Width	Tol	I.D.	O.D.	Width	I.D.	O.D.	Width	Tol
-461	405.26	± 1.91	6.99	$\pm .15$	16	$161 / 2$	1/4	15.955	$\pm .075$. 275	$\pm .006$
-462	417.96	± 1.91	6.99	$\pm .15$	$161 / 2$	17	1/4	16.455	$\pm .075$. 275	$\pm .006$
-463	430.66	± 2.03	6.99	$\pm .15$	17	$171 / 2$	1/4	16.955	$\pm .080$. 275	$\pm .006$
-464	443.36	± 2.16	6.99	$\pm .15$	171/2	18	1/4	17.455	$\pm .085$. 275	$\pm .006$
-465	456.06	± 2.16	6.99	$\pm .15$	18	$181 / 2$	1/4	17.955	$\pm .085$. 275	$\pm .006$
-466	468.76	± 2.16	6.99	$\pm .15$	181/2	19	1/4	18.455	$\pm .085$. 275	$\pm .006$
-467	481.46	± 2.29	6.99	$\pm .15$	19	$191 / 2$	1/4	18.955	$\pm .090$. 275	$\pm .006$
-468	494.16	± 2.29	6.99	$\pm .15$	$191 / 2$	20	1/4	19.455	$\pm .090$. 275	$\pm .006$
-469	506.86	± 2.41	6.99	$\pm .15$	20	$201 / 2$	1/4	19.955	$\pm .090$. 275	$\pm .006$
-470	532.26	± 2.41	6.99	$\pm .15$	21	$211 / 2$	1/4	20.955	$\pm .090$. 275	$\pm .006$
-471	557.66	± 2.54	6.99	$\pm .15$	22	$221 / 2$	1/4	21.955	$\pm .100$. 275	$\pm .006$
-472	582.68	± 2.67	6.99	$\pm .15$	23	$231 / 2$	1/4	22.940	$\pm .105$. 275	$\pm .006$
-473	608.08	± 2.79	6.99	$\pm .15$	24	$241 / 2$	1/4	23.940	$\pm .110$. 275	$\pm .006$
-474	633.48	± 2.92	6.99	$\pm .15$	25	$251 / 2$	1/4	24.940	$\pm .115$. 275	$\pm .006$
-475	658.88	± 3.05	6.99	$\pm .15$	26	$261 / 2$	1/4	25.940	± 120	. 275	$\pm .006$

O-RING SIZE TABLES

AS568A	Actual dimensions(mm)					Actual dimensions(inches)			
No.	I.D.	O.D.	Width	Tol	(Reference)	I.D.	O.D.	Width	Tol
-901	4.70	$\pm .13$	1.42	$\pm .08$	3/32	. 185	$\pm .005$. 056	$\pm .003$
-902	6.07	$\pm .13$	1.63	$\pm .08$	1/8	. 239	$\pm .005$. 064	$\pm .003$
-903	7.65	$\pm .13$	1.63	$\pm .08$	3/16	. 301	$\pm .005$. 064	$\pm .003$
-904	8.92	$\pm .13$	1.83	$\pm .08$	1/4	. 351	$\pm .005$. 072	$\pm .003$
-905	10.52	$\pm .13$	1.83	$\pm .08$	5/16	. 414	$\pm .005$. 072	$\pm .003$
-906	11.89	$\pm .13$	1.98	$\pm .08$	3/8	. 468	$\pm .005$. 078	$\pm .003$
-907	13.46	$\pm .18$	2.08	$\pm .08$	7/16	. 530	$\pm .007$. 082	$\pm .003$
-908	16.36	$\pm .23$	2.21	$\pm .08$	1/2	. 644	$\pm .009$. 087	$\pm .003$
-909	17.93	$\pm .23$	2.46	$\pm .08$	9/16	. 706	$\pm .009$. 097	$\pm .003$
-910	19.18	$\pm .23$	2.46	$\pm .08$	5/8	. 755	$\pm .009$. 097	$\pm .003$
-911	21.92	$\pm .23$	2.95	$\pm .10$	11/16	. 863	$\pm .009$. 116	$\pm .004$
-912	23.47	$\pm .23$	2.95	$\pm .10$	3/4	. 924	$\pm .009$. 116	$\pm .004$
-913	25.04	$\pm .26$	2.95	$\pm .10$	13/16	. 986	$\pm .010$. 116	$\pm .004$
-914	26.59	$\pm .26$	2.95	$\pm .10$	7/8	1.047	$\pm .010$.116	$\pm .004$
-916	29.74	$\pm .26$	2.95	$\pm .10$	1	1.171	$\pm .010$. 116	$\pm .004$
-918	34.42	$\pm .30$	2.95	$\pm .10$	11/8	1.355	$\pm .012$. 116	$\pm .004$
-920	37.47	$\pm .36$	3.00	$\pm .10$	11/4	1.475	$\pm .014$. 118	$\pm .004$
-924	43.69	$\pm .36$	3.00	$\pm .10$	$11 / 2$	1.720	$\pm .014$. 118	$\pm .004$
-928	53.09	$\pm .46$	3.00	$\pm .10$	13/4	2.090	$\pm .018$. 118	$\pm .004$
-932	59.36	$\pm .46$	3.00	$\pm .10$	2	2.337	$\pm .018$. 118	$\pm .004$

GLOSSARY \& ABBREVATIONS
\square

```
"This glossary contains a wide variety of terms frequently used
within the sealing industry. Familiarity with these terms will be
    beneficial as you design O-ring seals."
```


A

ABRASION - progressive wearing away of a surface in service by mechanical action such as scraping, rubbing, or erosion
ABRASION RESISTANCE - resistance of a rubber compound to wearing away when in dynamic contact with an abrasive surface.
ABSORPTION - physical mechanism by which one substance attracts and takes up another substance (liquid, gas, or vapor) into its interior.
ACCELERATED LIFE TEST - any set of test conditions designed to reproduce in a short time the deterioration obtained under normal service conditions.
ACCELERATED SERVICE TEST - bench or service test in which a particular service condition, such as speed, temperature, or continuity of operation, is exaggerated so as to obtain a more rapid result
ACCELERATOR - chemical which speeds the vulcanization of an elastomer, so that it takes place in a shorter time or at a lower temperature. Picking up where an activator leaves off, an accelerator is often used in conjunction with a catalyst, hardener, or curing agent.
ACID RESISTANT - able to withstand the degrading effects of acids.
ACTIVATOR - chemical which initiates the vulcanization of an elastomer.
ACTUAL SIZE - exact size of an O-ring or seal in decimal dimensions (inches or millimeters), including tolerances.
ADDITIVE - material added to an elastomeric compound to alter its properties, e.g. a reinforcing agent to improve strength or a plasticizer to aid flexibility and processibility. ADHERE - (a) to cling or stick together; or (b) to cause two surfaces to stick together. ADHESION - tendency of rubber or other material to stick to a contact surface; may result from chemical or physical interlocking.
ADHESIVE - substance used to hold materials together.
ADSORPTION - physical mechanism by which one substance attracts another substance (either solid, liquid, gas, or vapor) to its surface.
AERATION - air (or gas) bubbles built up within a liquid.
AFTER CURE - uncontrolled continuation of vulcanization after the desired cure has been effected and the heat source removed; not the same as post cure.
AGING - change in rubber characteristics over time brought about by environmental factors such as heat and light.

AIR CHECKS / TRAPS - surface marks or depressions on a molded rubber product resulting from air getting trapped between the material being cured and the mold

surface.

AIR CURING - vulcanization of rubber in air as opposed to steam or press vulcanization. ALCOHOLS - organic compounds containing the hydroxyl (-OH) group; used as starting points in the production of synthetic resins, synthetic rubbers, and plasticizers.
ALIPHATIC HYDROCARBONS - organic compounds recognizable by their straight chains of carbon atoms. Three subgroups comprise aliphatic hydrocarbons: paraffins (alkanes), olefins (alkenes), and acetylenes (alkynes).
AMBIENT TEMPERATURE - temperature of the environment surrounding a component; not necessarily the same as atmospheric temperature.
AMINE - chemical used as a curing agent for fluoroelastomers; also a film-forming inhibitor used to prevent corrosion in oil-field tubular goods.
AMORPHOUS - non-crystalline in structure; may be used in reference to polymers
whose molecular chains are irregular and that therefore do not fit closely together.
ANILINE POINT - lowest temperature at which equal volumes of aniline and a petroleum fluid will completely dissolve in one another. The aniline point of oil is a measure of the aromatic content or the amount of unsaturated hydrocarbons present. The lower the aniline point, the higher the level of unsaturants, and the higher the potential for swelling certain rubber compounds.
ANTI-DEGRADANT - chemical added to an elastomeric compound to shield against the degrading effects of environmental elements like oxygen or ozone.
ANTI-EXTRUSION RING (DEVICE) - relatively hard, high modulus ring (or similar device) placed in the gland between the O-ring and the groove side walls, to prevent extrusion of the seal into the clearance gap; also known as a back-up ring.
ANTIOXIDANT - chemical added to a rubber compound to resist oxidation.
ANTIOZONANT - chemical added to a rubber compound to resist ozone (O3)
degradation.
AROMATIC HYDROCARBONS - organic compounds recognizable by their rings of carbon atoms. Benzene, for example, is a six carbon ring with three double bonds. Other aromatic hydrocarbons include toluene and xylene (see Figure 146).
AS 568A - Aerospace Standard Uniform Dash Numbering System; specifies 0-ring sizes based on their inside diameter (I.D.) and cross-section (W); supersedes and cancels AS 568 and ARP 568.
ASSEMBLED STRETCH - amount of stretch as measured once a seal is seated in the groove.

Figure 146: benzene ring

$G L O S S A R Y$

ATMOSPHERIC CRACKING - cracking and degradation of the physical properties of a rubber product exposed to atmospheric conditions; also known as weathering. ATOM - smallest unit of an element that (a) still retains all the properties of that element; and (b) is capable of entering into a chemical reaction.
ATOMIC NUMBER - the number of protons within the nucleus of an atom. For example, carbon has six protons and its atomic number is 6 . Elements are listed in order of their increasing atomic numbers in the Periodic Table.
ATOMIC WEIGHT - sum of the masses of the protons and neutrons within the nucleus of a given atom. Because their weight is negligible, electrons are not included in this total; also known as atomic mass.
AXIAL SEAL - an O-ring that seals on a plane perpendicular to its axis instead of on its outside diameter (O.D.) or inside diameter (I.D.); also known as a face seal. AXIAL SQUEEZE - compression on an O-ring's top and bottom surfaces, as with face (flange) type designs.

B

BACK-UP RING - relatively hard, high modulus ring placed in the gland between the o-ring and the groove side walls, to prevent extrusion of the seal into the clearance gap; also known as an anti-extrusion ring or device
BACKRIND - ragged indentation at the parting line of a finished rubber product resulting from molding stresses.
BANBURY MIXER - specific type of internal mixer in which rubber compounds are blended.
BI-DIRECTIONAL SEAL - seal which provides fluid sealing on both sides (see Figure 147), BLEEDING - migration of plasticizers, waxes, or other compound ingredients to the surface of a molded rubber product; also known as blooming.
BLEMISH - mark or deformity on the surface of a molded product
BLISTER - raised area on the surface of a molded product caused by the pressure of internal gases.
BLOOM - creamy or dusty deposit appearing on the surface of a molded rubber product caused by the migration of certain compound ingredients to the rubber's surface after molding and storage
BLOOMING - migration of plasticizers, waxes, or other compound ingredients to the surface of a molded rubber product; also known as bleeding.
BOND - (a) to unite two materials; or (b) the mechanical, chemical, or adhesive force which binds an elastomer to another object. Mechanical bonds use interlocking design characteristics to ensure continued physical contact. Chemical bonds are based on internal cross-linking. Adhesive bonds rely on cements or other external adhesives BREAK-OUT FRICTION - static frictional force which must be overcome to initiate movement; also known as static friction or stiction (see Figure 159).
BRITTLENESS - tendency to crack upon deformation.
BRITTLENESS POINT - lowest temperature at which a rubber sample will not fracture or crack when struck once.
BUNA N - copolymer of butadiene and acrylonitrile; also known as NBR or nitrile rubber.

BUNA S - copolymer of butadiene and styrene; also known as SBR or styrene butadiene rubber.
BUTT JOINT - joining two seal ends such that the junction is perpendicular to the mold parting line.
BUTYL - copolymer of isobutylene and isoprene.

Figure 147: Sealing on both sides

GLOSSARY

C

C $\left(^{\circ} \mathbf{C}\right)$ - degrees Centigrade (Celsius).
CATALYST - chemical that causes or accelerates the cure of a rubber compound, but that does not usually become a chemical component of the end product.
CAVITY - hollow space within the mold in which uncured rubber is shaped and vulcanized; also known as mold cavity.
CHAIN EXTENDER - chemical combined with a polyurethane pre-polymer; acts much like a cross-linking or vulcanizing agent used to cure rubber
CHAIN SCISSION - breaking of molecular bonds within the backbone of a polymer due to chemical or thermal attack that divides the polymer chains into smaller segments, with a resulting loss in physical properties; also known simply as scission.
CHAMFER - beveled edge in a component to facilitate assembly of a seal onto a rod or shaft, or into a cylinder or housing; also known as a lead-in chamfer (see Figure 153). CHECKING - cracking or crazing of an elastomer's surface due to the action of sunlight; also known as sun checking.
CHLORINATED HYDROCARBONS - organic compounds having chlorine and hydrogen atoms in their chemical structure. Examples include trichloroethylene, methylene chloride, and methyl chloroform.
CHLORINATION - surface treatment using chlorine gas that reduces break-out and running friction in molded rubber seals.
CLEARANCE GAP - the gap between two mating surfaces.
commonly refers to the breaking of cross-link bonds between polymer chains or sidegroups that are pendent to the polymer backbone.
COEFFICIENT OF THERMAL EXPANSION - may be linear or volumetric: (a) the coefficient of linear thermal expansion is the change in length per unit of length for a one degree rise in temperature; and (b) the coefficient of volumetric thermal expansion is the change in volume divided by the product of the original volume and the change in temperature. The coefficient of volumetric thermal expansion is three times the coefficient of linear thermal expansion for a solid material.
COLD FLEXIBILITY - ability of an elastomeric product to resist cracking or breaking when flexed or bent at low temperatures; also known as low temperature flexibility. COLD FLOW - increasing deformation of a rubber material under a constant compressive load; also known as creep.
COLD RESISTANT - able to function in low temperature applications.
COMMERCIALLY SMOOTH - surface smoothness that is acceptable for use. COMPATIBILITY - a seal material's resistance to having its chemical (and by extension, its physical) properties degraded (either temporarily or permanently) as a result of contact with a liquid or gas.
COMPOSITE SEAL - seal composed of two (or more) separate materials, such as rubber and metal, generally bonded together.
COMPOUND - (a) molecules made up of differing atoms; and (b) a mixture of polymers and other ingredients to produce an elastomeric material.

COMPRESSION MODULUS - ratio of compression stress (force in psi) to resulting compression strain (noted as a percentage of the original specimen thickness). COMPRESSION MOLDING - thermoset molding technique (see Figure 148) in which the uncured rubber compound is put in a heated, open mold cavity and the mold is closed under pressure (often in a hydraulic press). The material flows to completely fill the cavity. Pressure is maintained until curing is complete.
COMPRESSION SEAL - seal effected by compressing a rubbery material between mating surfaces.
COMPRESSION SET - (a) the amount, expressed as a percentage of deflection, by which a rubber specimen does not return to its original thickness following release of a compressive load; and (b) the end result of a progressive stress relaxation. In terms of the life of a seal, stress relaxation is like dying, whereas compression set is like death.

Figure 148: Compression molding relies on pressure and material flow

GLOSSARY

CONDUCTIVE RUBBER - rubber material that is capable of conducting electricity, usually static electricity. To be classified as conductive, an elastomer must have a direct current resistivity of less than 105 ohm/cm.
COPOLYMER - polymer composed of two different monomers, chemically combined. For example, Buna N is a copolymer of butadiene and acrylonitrile.
CORROSION - progressive wearing away of a surface in service by chemical action.
CORROSIVE - material property that promotes corrosion of a mating sealing surface.
COVALENT BOND - bond between atoms consisting of a pair of shared electrons.
CRACKING - sharp breaks or fissures in a rubber surface caused by excessive strain and/or exposure to detrimental environmental conditions, such as ozone, weather, or ultraviolet (UV) light; also known as crazing
CREEP - increasing deformation of a rubber material under a constant compressive load; also known as cold flow.
CRITICAL TEMPERATURE (Tc) - (a) regarding gases, the temperature above which a gas cannot be liquefied, regardless of the amount of pressure applied to it; and (b) regarding rubber compounds, the temperature above which a rubber can no longer strain crystallize.
CROSS-SECTION - (a) view of a seal, cut at right angles to the mold parting line, exposing the seal's internal structure; and (b) one-half the difference between the outside diameter (O.D.) and inside diameter (I.D.) of a seal; also known as width (W). CRYOGENIC - pertaining to very low temperatures. Some molded articles are deflashed in cryogenic chambers.
CRYSTALLINE - containing crystals; may be used in reference to polymers whose molecular chains are very regular and that therefore fit closely together into a rigid pattern.
CURE - heat-induced process whereby the long chains of the rubber molecules become cross-linked by a vulcanizing agent to form three-dimensional elastic structures. This reaction transforms soft, weak, non-cross-linked materials into strong elastic products also known as vulcanization.
CURE CURVE - graphic representation plotted by a batch testing device (such as an oscillating disk rheometer) showing a rubber sample's state of cure for a given time and temperature.
CURE DATE - the quarter and year indicating the molding date of a rubber part.
CURING TEMPERATURE - temperature at which a rubber product is vulcanized.
CYCLE TIME - the time that elapses between a given point in one molding cycle and the same point in the next cycle (for example, loading of raw stock, through molding and unloading of finished parts, then back to reloading again). Generally speaking, the longer the cycle time, the more the process costs and the more expensive the finished part will be.
CYLINDER - chamber in which a piston, ram, rod, or shaft operates.

D

DAMPER - device capable of minimizing motion or dissipating energy, such as a shock absorber. Because an elastomer has a viscous phase, it can be thought of as a damper i.e. the elastomer resists motion (deformation), making it an effective seal material DASH NUMBER - three-digit number preceded by a dash as specified by SAE Aerospace Standard 568A to indicate the 0-ring size based on its inside diameter (I.D.) and crosssection (W); also known as size number.
DEFLASH - process of removing excess material (flash) from the parting line of a molded rubber product.
DEFLECTION - change in the shape of a seal as a result of compression; also known as deformation
DEGASSING - the intentional, controlled evaporation of volatile substances out of a rubber material.
DEGRADATION - breakdown in chemical structure and/or loss of physical properties
after exposure to harmful agents (such as heat, sunlight, oxygen, ozone, or weather)
DIAMETRAL CLEARANCE GAP - the difference in diameters between two mating
surfaces to be sealed.
DIENE RUBBER - rubber containing a double bond in the main chain; such double bonds are vulnerable to attack (such as by oxygen, ozone, and UV light).
DIFFERENTIAL PRESSURE - difference in the amount of force being exerted on the highpressure side of a seal (the side facing system pressure) relative to the low-pressure side (the side facing away from system pressure). Differential pressure is responsible for forcing a seal toward the low pressure side of a gland (see Figure 149).

High Pressure Side Low Pressure Side (1500 psi) (1000 psi) Differential pressure $=500 \mathrm{psi}$
Figure 149: The two side of a seal

DOUBLE BOND

Figure 150: Site for crosslinking and attack

$G L O S S A R Y$

DIISOCYANATE - hard segment in the polyurethane backbone; imparts toughness and heat resistance
DOUBLE-ACTING SEAL - dynamic reciprocating seal capable of sealing in both directions of movement
DOUBLE BOND - covalent bond consisting of two pairs of shared electrons. A double bond occurring between two carbon atoms (such as is found in the butadiene segment of nitrile rubber) is inherently more chemically reactive and is a site for both crosslinking and chemical attack (see Figure 150).
DRY RUNNING - absence of liquid or lubrication in a dynamic sealing application.
DUROMETER - (a) an instrument that measures the hardness of rubber by its resistance to surface penetration of an indenterpoint; and (b) the numerical scale indicating the hardness of rubber. See also "Shore A Durometer" and "Shore D Durometer."
DYNAMIC - describes an application in which the mating surfaces to be sealed are in relative motion to each other.
DYNAMIC FRICTION - friction resulting from relative motion between two contacting surfaces.
DYNAMIC SEAL - seal functioning in an environment in which there is relative motion (e.g. reciprocating, rotary, or oscillating) between the mating surfaces being sealed.

E

ELASTICITY - an elastomer's inherent ability to readily regain its original size and shape after being released from a deforming load.
ELASTOMER - any natural or synthetic material meeting the following requirements:
(a) it must not break when stretched 100%; and (b) after being held at 100% stretch for five minutes then released, it must return to within 10% of its original length within five minutes.
ELASTOMERIC COMPOUND - combination of a base polymer and additives
ELECTRON - small, negatively-charged particle orbiting the nucleus of an atom; for electrically-neutral atoms, the number of electrons equals the number of positivelycharged protons within the nucleus.
ELEMENT - term referring to a single type of atom making up a substance.
ELONGATION - percentage increase in original length (strain) of a specimen produced by a tensile force (stress) applied to the specimen. "Ultimate elongation" is the
elongation at the moment the specimen breaks.
ENCAPSULATION - enclosure or jacket surrounding another material; for example, a Teflon® encapsulation over an O-ring core molded from a different material.
ENDOTHERMIC - absorbing heat.
EVAPORATION - direct conversion of a fluid from liquid to vapor.
EXOTHERMIC - giving off heat, as during a chemical reaction.
can be likened to "getting the bends."

EXPLOSIVE DECOMPRESSION - phenomenon occurring in rubber seals after exposure to high-pressure gas. This gas permeates into the elastomer through flaw sites present in all molded rubber products. During an equilibrium shift (lowered pressure), the gas then expands within the seal, causing internal ruptures in high shear modulus (hard) materials and surface blisters in low shear modulus (soft) materials. Explosive decompression
EXTEND - add fillers or other low-cost materials to an elastomeric mixture in an effort to reduce costs and to increase the amount of compound that is available for use, i.e. extend" its usage.
EXTENDER - relatively inexpensive and inert material added to an elastomeric compound to reinforce or modify properties (e.g. physical, mechanical, electrical, thermal), impart certain processing properties, or reduce costs; also known as a filler. EXTRACTION - removal from a material, as when fuel or other system fluids chemically remove a compound's plasticizer, leading to seal shrinkage.
EXTRUSION - pressure-induced distortion or extension of part of a seal into the clearance gap between mating seal surfaces.

F

F (${ }^{\circ}$ F) - degrees Fahrenheit.
FACE - front surface of a seal; in an O-ring, the two surfaces that are perpendicular to its axis.
FACE SEAL - an O-ring that seals on a plane perpendicular to its axis instead of on its outside diameter (O.D.) or inside diameter (I.D.); also known as an axial seal.
FATIGUE RESISTANCE - capable of withstanding fatigue caused by repeated bending, extension, or compression; also known as flex resistance.
FILLER - relatively inexpensive and inert material added to an elastomer to reinforce or modify properties (e.g. physical, mechanical, electrical, thermal), impart certain processing properties, or reduce cost; also known as an extender.
FLASH - excess rubber remaining on the parting line of a molded rubber product (see Figure 151).

Figure 151: Excess rubber on the OD and ID

FLAWS - surface imperfections that occur infrequently (i.e. not in a pattern), as with an isolated scratch or crack in the metal of a gland.
FLEX CRACKING - surface cracks caused by repeated flexural cycling.
FLEX RESISTANCE - capable of withstanding fatigue caused by repeated bending, extension, or compression; also known as fatigue resistance.
FLOW LINES - imperfections in a molded rubber product caused by imperfect flow of the material during molding; also known as flow cracks or flow marks.

FLUID - a liquid or a gas.

FLUOROCARBON - carbon backbone, organic compound having fluorine atoms in its chemical structure. Presence of the fluorine provides increased chemical and high temperature resistance.
FRICTION - motion resistance resulting from contact between mating surfaces, usually accompanied by liberation of heat energy.
FRICTION (BREAK-OUT) - static frictional force which must be overcome to initiate movement; also known as static friction or stiction (see Figure 159).
FRICTION (RUNNING) - dynamic frictional force which must be overcome to maintain movement.
FUEL (AROMATIC) - fuel containing aromatic (ringed) hydrocarbons (such as benzene, toluene, and xylene). Aromatic fuels cause high swell of rubber.
FUEL (NON-AROMATIC) - fuel containing aliphatic (straight chain) hydrocarbons (such as octane). Non-aromatic fuels cause less rubber swell than aromatic fuels.

G

GASKET - static seal effected when a deformable material is sandwiched and compressed between two mating surfaces
GATE MARK - raised spot or small depression seen on an injection or transfer molded product; caused when the finished molded part is removed from the injection nozzle (gate or sprue) through which the material is injected into the mold cavity; also known as a sprue mark.
GLAND - machined cavity into which an O-ring or other seal is fitted; includes the groove and the mating surface to be sealed.
GLASS TRANSISTION (Tg) - temperature at which a viscous polymer loses all ability to flow or store energy, becoming hard and brittle (like glass).
GOUGH-JOULE EFFECT - tendency of a stretched rubber specimen to retract when heated.
GROOVE - machined recess within a gland into which an O-ring or other seal is fitted.

H

HARDNESS - measure of rubber's relative resistance to an indenter point on a testing device. Shore A durometers gauge soft to medium-hard rubber. Shore D durometers are more accurate on samples harder than 90 Shore A.
HEAT AGING - loss of physical properties as a result of exposure to heat
HEAT BUILD-UP - temperature rise in a molded rubber product due to hysteresis during epeated deformations
HEAT RESISTANCE - rubber compound's capacity to undergo exposure to some specified level of elevated temperature and retain a high level of its original properties. HERMETIC SEAL - an airtight seal.
HETEROPOLYMER - polymer composed of differing monomers.
HOMOGENOUS - used to describe a rubber material of uniform composition, with no fabric or metal reinforcement.
HOMOPOLYMER - polymer composed of identical monomers
HYDROCARBONS - organic compounds with both hydrogen and carbon in their
chemistry. Many organic compounds are hydrocarbons. Aliphatic hydrocarbons, such as butane, have a straight-chain structure. Aromatic hydrocarbons, such as benzene, are ringed structures.
HYDROGENATION - addition of hydrogen atoms to an organic compound to reduce the number of carbon-to-carbon double bonds that would otherwise be weak links in the polymer chain. For example, the hydrogenation of nitrile produces a great compound
(HNBR) with both high strength and superior oxidation resistance
HYDROGEN BOND - an electrostatic attraction between a hydrogen atom in one
molecule and a small electronegative atom (like fluorine, oxygen, or nitrogen) in an adjoining molecule. Though not nearly as strong as covalent bonds, hydrogen bonds are present in such numbers in hydrocarbon polymers that they are an important source of polymer strength.
HYDROLYSIS - chemical decomposition as a result of contact with water
HYGROSCOPIC - capable of absorbing moisture, especially from the air.
HYSTERESIS - percent of energy lost per cycle of deformation, or 100% minus the resilience percentage. Hysteresis is the result of internal friction and is evident by the conversion of mechanical energy into heat.

GLOSSARY

I

I.D. - inside diameter of a seal or component.

IDENTIFICATION - colored stripes or dots on seals to differentiate among rubber compounds.
IMMERSION - putting an article into a fluid so that it is totally covered.
IMMISCIBLE - not capable of being mixed. With elastomers, "immiscible" is generally analogous to "insoluble" and refers to a substance (such as a seal) that cannot be dissolved in a fluid (such as the fluid being sealed). In order to have long seal life, it is important to maximize immiscibility.
IMPACT - forceful contact between two bodies, at least one of which is in motion. INERT - inactive or non-reactive; often used to describe a material (like Teflon®) that is impervious to many chemicals.
INHIBITOR - chemical added to an elastomeric compound to ensure vulcanization does not proceed too quickly.
INJECTION MOLDING - process in which preheated rubber is injected under pressure from the heating chamber through a series of runners and sprues and into a closed heated mold cavity, then vulcanized. Injection molding is ideal for high-volume production of molded rubber parts (see Figure 152).
INORGANIC - containing chemical structures not based on the carbon atom.
INSOLUBLE - not susceptible to being dissolved in a fluid.
INSTALLATION STRETCH - amount of stretch that a seal undergoes as it is being placed in the groove.
ION - atom with an electrical charge (either positive or negative) due to unequal numbers of protons and electrons. An ion with more protons than electrons will have a positive charge, whereas an ion with more electrons than protons will have a negative
charge.
IONIC BOND - strong electrical attraction between oppositely charged atoms (ions).

Figure 152: Injection molding forces rubber into a closed mold

ISO - International Organization for Standardization, a non-governmental organization whose primary aim is to develop guidelines on what constitutes an effective quality management system
ISOTOPE - one of two or more distinct forms of a given element. Isotopes have the same atomic number (due to identical numbers of protons) but different atomic masses (due to unlike numbers of neutrons).

K

$\mathbf{K}\left({ }^{\circ} \mathbf{K}\right)$ - degrees Kelvin. $0^{\circ} \mathrm{K}$ (also known as Absolute Zero) is equal to - $273^{\circ} \mathrm{C}$.

L

LAY - direction of the primary roughness pattern on a gland surface.
LEACHING - removal of soluble components, as when system fluids remove a compound's plasticizer, leading to seal shrinkage.
LEAD-IN (CHAMFER) - beveled edge in a component to facilitate assembly of a seal onto a rod or shaft, or into a cylinder or housing (see Figure 153).
LEAK RATE - rate at which a fluid (liquid or gas) passes a seal or barrier.
LIFE TEST - laboratory test used to determine the length of a product's life in a defined set of service conditions.
LOAD - actual pressure at a sealing face; normally the sum of the interference load and the fluid pressure at work on the seal.
LOGY - term used to describe a material with poor visco-elastic properties.
LOW TEMPERATURE FLEXIBILITY - ability of an elastomeric product to resist cracking or breaking when flexed or bent at low temperatures.

Figure 153: Beveled edge smooths assembly

M

MACROMOLECULE - large chainlike molecule, formed during a process called "polymerization," in which small molecules (monomers) form chemical bonds between one another; also known as a polymer.
MATING SURFACES - points where different parts of an assembly meet.
MATING SURFACES - points where different parts of an assembly meet. MAXIMUM CURE -

being over-cured.

MAXIMUM TEMPERATURE - highest temperature a rubber compound can withstand prior to undergoing a physical or chemical change.
MEMORY - an elastomer's ability to regain its original size and shape following deformation.
MICROPORES - very tiny pores on the surfaces of a gland. The presence of micropores, even on finely-machined metal surfaces, contributes to break-out friction. However, these pores also help hold lubricants, so their total elimination is not advantageous. MINIMUM TEMPERATURE - lowest temperature a rubber compound can withstand prior miNIMUM Tomperature - low rubbery properties.
MISCIBLE - capable of being mixed. In the case of elastomers, "miscible" is generally MISCIBLE - capable of being mixed. In the case of elastomers, "miscible" is generally
analogous to "soluble" and refers to a substance (such as an elastomeric seal) that can analogous to "soluble" and refers to a substance (such as an elastomeric seal) that can
be dissolved in a fluid (such as the fluid being sealed). In order to have long seal life, it is important to minimize miscibility.
MISMATCH - asymmetrical seal cross section caused by dimensional or mating differences in mold sections.
MODULUS - the force in psi (stress) required to produce a certain elongation (strain), usually 100\%; a good indication of toughness and resistance to extrusion; also known as tensile modulus or tensile stress.use (see Figure 154).
MODULUS OF ELASTICITY - ratio of the stress (force in psi) to the strain (percent
increase in original length) as measured on a rubber specimen; also known as Young's modulus (E); not the same as tensile modulus.
MOISTURE RESISTANCE - able to resist absorbing moisture from the air or during water immersion.
MOLD - (a) to shape or process a material into a usable form; and (b) metal tools, usually steel or aluminum, machined and assembled so as to create openable cavities for the purpose of shaping and vulcanizing rubber.
MOLD CAVITY - hollow space within the mold in which uncured rubber is shaped and vulcanized; also known simply as a cavity.
MOLD FINISH - surface finish of the mold; determines the surface finish of any product taken from that mold.
MOLD LUBRICANT - coating used in the mold cavity to prevent a molded rubber product from sticking to the cavity during removal; also known as mold release.
MOLD MARKS - imperfections in a molded rubber product replicating surface defects on the mold itself.

MOLD REGISTER - accuracy of alignment of mold plates and cavities. An improperly aligned mold is said to be off-register and will produce mismatched parts. MOLD RELEASE - coating used in the mold cavity to prevent a molded rubber product from sticking to the cavity during removal; also known as mold lubricant.
MOLD SHRINKAGE - dimensional loss in a molded rubber product that occurs during cooling after it has been removed from the mold.
MOLD STORAGE - holding area in which removable mold plates are stored when not in use (see Figure 154).
MOLECULAR WEIGHT - sum of the atomic masses of the elements forming a molecule. MOLECULE - an electrically neutral aggregate of chemically bonded atoms.
MONOMER - small molecule capable of reacting with other molecules to form large chainlike molecules (macromolecules) called polymers.
MOONEY VISCOMETER - shearing disk device used to gauge the viscosity of a rubber sample under heat and pressure. Named for developer Melvin Mooney, this was once the standard tool for determining processing characteristics but has now largely been replaced by the rheometer.
MULTIPLE CAVITY MOLD - mold in which more than one article can be made at a time.

Figure 154: Individual mold plates are organized for easy retrieval

$G L O S S A R Y$

N

NEUTRON - non-charged particle within the nucleus of an atom; hydrogen is the only atom which contains no neutrons.
NIBBLING - progressive mode of seal failure that occurs when excessive pressure
forces a portion of an O-ring or other rubber seal into a clearance gap. Expansion and contraction of the gap (breathing) caused by pressure cycling traps extruded portions of the seal in the gap, resulting in bite-like portions (nibbles) being removed from the seal (see Figure 155).
NITRILE (BUNA-N) - copolymer of butadiene and acrylonitrile widely used in 0-rings and other seals.
NOMINAL SIZE - approximate size of an 0-ring or seal in fractional dimensions (mm); typically given solely for reference purposes; also known as nominal dimension. NON-FILL - defect in a finished molded part caused by the rubber failing to completely fill the mold cavity.

Figure 155: Small bits of the seal are torn off

0

OCCLUSION - (a) mechanical process by which vapors, gases, liquids, or solids are entrapped within the folds of a given substance during working or solidification; and (b) the materials entrapped by this process.
O.D. - outside diameter of a seal or component
O.D. - outside diameter of a seal or component. OFF-REGISTER - mismatched 0 -ring cross-section caused by misalignment of mold
cavities. cavities.
OIL RESISTANT - ability of vulcanized rubber to resist swelling and deterioration due to oil exposure.
OIL SWELL - increase in volume of a rubber product as a result of oil absorption. OPTIMUM CURE - vulcanization state yielding the most desirable properties.
ORGANIC - containing chemical structures based on the carbon atom.
O-RING - solid elastomer ring seal of circular cross-section; technically, a torus. OSCILLATING SEAL - rotary seal with limited, reversing travel; as in an on/off valve. OUTGASSING - phenomenon occurring in vacuums where the volatile materials in a rubber compound are vaporized and released into the environment.
OVER CURE - longer than optimum vulcanization causing some properties to be degraded. Over-cure can be of two types. In the first type, the material continues to harden, the modulus rises, and both tensile strength and elongation fall. In the second type, the rubber begins to break down. The material softens, and the modulus, tensile strength, and elongation all decrease.
OXIDATION - reaction of oxygen with a rubber compound, usually resulting in surface cracking and/or changes in the physical properties of the material.
OZONE (O3) - unstable form of oxygen (usually generated by electricity) that can cause surface cracking in some elastomers.
OZONE RESISTANCE - ability of a rubber material to withstand exposure to ozone without cracking or otherwise deteriorating.

$G L O S S A R Y$

P

PACKING - generic name for a compression-type dynamic seal housed within a gland PARTING LINE - mark on a molded rubber article showing where separate parts of the mold cavity met.
PERIPHERAL SQUEEZE - compression applied to the O.D. of a seal when installed in a bore that is smaller than the O.D. of the seal
PERMANENT SET - amount of deformation in a rubber part after a distorting load has been removed.
PERMEABILITY - measure of the ease with which a liquid or gas can pass through a rubber material (see Figure 156).
PIGMENT - substance included in a material mixture to colorize it in a specific way. PIT OR POCK MARK - small surface void in a molded rubber product caused by mechanical erosion (wear) or chemical action.
PLASTICIZER - chemical substance added to a rubber compound to soften the elastomer, provide flexibility at low temperatures, and improve processing; also known as a softener.
POISSON'S RATIO - ratio of the change in width per unit of width to the change in length per unit of length. For most rubber materials, Poisson's ratio is essentially equal to 0.5. POLARITY - imbalance in electrical charge (dipole moment) caused by covalent bonds occurring between two dissimilar atoms. The difference in electrical charges of each atom creates a slight negative charge on one atom and a slight positive charge on the other atom. Since hydrocarbon oils are usually non-polar, they are repelled by polymers that have polarity, resulting in increased oil resistance and other properties not found in elastomers containing only carbon and hydrogen atoms.

Figure 156: Just passing through

POLYMER - large chainlike molecules (macromolecules) made up of small repeating units (monomers). When two different monomers are chemically combined, the resulting product is called a copolymer. When three different monomers are involved, the result is a terpolymer.
POLYMERIZE - to chemically unite two or more monomers or polymers to form a molecule with a higher molecular weight.
POLYOL - soft segment in the polyurethane backbone; imparts rubber-like softness and flexibility.
POROSITY - quality or state of having pores or holes in a material.
POST CURE - controlled continuation of vulcanization, usually in an oven, to complete the curing process, drive off residual byproducts, and provide stabilization of parts; not the same as after cure.
POTABLE - (a) drinkable; and (b) a liquid that is safe or suitable for drinking. PRE-POLYMER - polyurethane polyol and diisocyanate mixture prior to combination with a chain extender.
PROFILOMETER - an instrument used to gauge surface roughness, i.e. to determine the "profile" of a given surface.
PROTON - positively-charged particle within the nucleus of an atom; for electricallyneutral atoms, the number of protons exactly equals the number of negatively-charged electrons orbiting the nucleus. The number of protons in an atom is also said to be that element's atomic number, e.g. carbon has six protons, so its atomic number is 6 .

Q

QUAD RING - solid elastomeric ring seal with a four-lobed cross-section. QPL - Military Qualified Products List; listing of commercial products shown in pretesting to meet the demands of a specification, particularly a federal specification QS 9000 - Quality System developed by the automotive industry to supplement the ISO 9000 standard.

R

RADIAL SEAL - O-ring or seal having compression applied to its outside diameter (O.D.) and inside diameter (I.D.)
RADIAL SQUEEZE - compression on an O-ring's outside diameter (O.D.) and inside diameter (I.D.), as with cap and plug type configurations.
RADIUS - (a) the distance from the center of a circle to the edge, or one-half the
diameter; and (b) to round off a sharp corner, as in the "radiusing" of a gland's top edges to prevent them from nicking or cutting an O-ring during installation.
RECIPROCATING SEAL - dynamic seal used to seal pistons or rods that are in linear motion.
REINFORCING AGENT - material added to an elastomer to improve physical properties such as tensile strength, tensile modulus, and compression modulus.

$G L O S S A R Y$

RELATIVE HUMIDITY - ratio of the amount of water vapor present in the air to the greatest amount that could be present at a given temperature; expressed as a percentage.
RELAXATION - decrease in the force exerted against a mating part by a rubber component that has been under a constant load for a period of time.
REPEATABILITY - consistency of test results taken within a single lab. For example, the similarity (or lack thereof) of multiple durometer readings taken on a single sample with the same tester.
REPRODUCIBILITY - consistency of test results taken among several different labs. For example, the similarity (or lack thereof) of multiple durometer readings taken on a single sample with a series of different testers
RESILIENCE - a compound's ability to rapidly regain original size and shape following deformation. Also known as rebound
REVERSION - condition in an elastomer caused by thermal or chemical attack whereby chemical bonds are broken with a resulting loss in physical properties
RHEOMETER - cure meter which determines and plots a cure curve illustrating the state of cure for a given time and temperature; typically either an Oscillating Disk Rheometer (ODR) or a Moving Die Rheometer (MDR).
ROOT MEAN SQUARE (RMS) - The square root of the sum of the squares of deviation from true flat; a measure of surface roughness (as with glands or shafts) generally noted in $\mu \mathrm{m}$.
ROTARY SEAL - seal capable of sealing between a rotating shaft and an outer surface, such as a groove or housing bore.
ROUGHNESS - closely-spaced irregularities on a gland's surface that are the result of manufacturing and/or cutting (as by tools or abrasive materials, see Figure 157).
ROUGHNESS AVERAGE (Ra) - measure of the roughness of a metal surface; determined by averaging the absolute value of the deviations from a mean line over a set evaluation length.
RUBBER - natural or synthetic elastomeric substance.
RUNNING FRICTION - dynamic frictional force which must be overcome in order to maintain movement. Running friction generally necessitates the use of some form of lubrication.
RUNOUT (SHAFT) - phenomenon which occurs when the shaft's axis and the axis of rotation are different, causing the shaft to wobble or gyrate; expressed in mm followed by the abbreviation "TIR" (Total Indicator Reading).

[^3]
S

SATURATED BONDS - single bonds between carbon atoms and other atoms (such as hydrogen) that are less reactive and less prone to chemical attack than carbon-tocarbon double or triple bonds. The carbon atoms in the backbone of an organic polymer are each capable of forming four individual and separate single covalent bonds
SATURATION - (a) addition of atoms to a compound to occupy the otherwise "open" or unbonded sites on a polymer chain; results in a more stable, less reactive compound. For example, a highly-saturated organic compound has almost every carbon atom already bonded to a hydrogen atom and therefore has a dramatically reduced ability to interact with other compounds and an increased resistance to chemical attack. saturation using hydrogen atoms is also known as hydrogenation; and (b) state in which most of the carbon atoms in an organic polymer's backbone have formed four individual and separate covalent bonds, resulting in increased chemical resistance as there are fewer double bonds that are susceptible to chemical attack (see Figure 158).
SCISSION - breaking of molecular bonds within the backbone of a polymer due to
chemical or thermal attack that divides the polymer chains into smaller segments, with a resulting loss in physical properties; also known as chain scission
SCORCHING - premature curing of rubber during storage or processing, usually caused by excessive heat.
SEAL - device that prevents fluid flow.
SEAL WIDTH (W) - axial dimension of a seal. In an O-ring, this is the same as the cross section.
SERVICE - operating conditions, such as temperature, pressure, chemical environment and surface speeds, under which a seal must perform.
SERVICE TEMPERATURE - range of temperatures to which a rubber compound will be subjected in a given application

SATURATION

Fiqure 158: Saturated compounds like HNBR are more stable

SHAFT - rotating or reciprocating component that operates within a cylinder or housing. SHEAR - deformation of a material or surface as a result of sliding or rubbing contact with another surface.
SHEAR MODULUS (G) - measure of stiffness or resistance to deformation taken in shear rather than in tension; technically, the ratio of a shearing stress (force in psi) to shearing strain (amount of linear deflection divided by the specimen thickness). In rubber materials, shear modulus is one-third of Young's modulus (E); not the same as tensile modulus.
SHELF-AGING - degradation of a rubber material's properties that occurs in storage over time.
SHELF LIFE - length of time a molded rubber compound can be stored without suffering significant loss of physical properties.
SHORE A DUROMETER - instrument used to gauge soft to medium hard rubber based on resistance to a frustum (truncated) cone indenter point; most accurate for materials below 90 Shore A.
SHORE D DUROMETER - instrument used to gauge hard rubber based on resistance to a sharp, 30° angle indenter point; most accurate for materials at or above 90 Shore A . SHRINKAGE - (a) after vulcanization, dimensional loss in a molded rubber product that occurs after it has been removed from the mold and allowed to cool; and (b) in seal service, a decrease in seal volume due to extraction of soluble components from the rubber compound by environmental fluids.
SILICONE RUBBER - silicon-oxygen backbone elastomer with excellent high temperature and low temperature properties.
SINGLE-ACTION SEAL - dynamic reciprocating seal capable of sealing in only one direction of movement.
SIZE - actual size refers to the actual dimensions of an O-ring or seal, including tolerances. Nominal size refers to the approximate size in fractional dimensions. SIZE NUMBER - three-digit number preceded by a dash as specified by SAE Aerospace Standard 568A to indicate the 0 -ring size based on its inside diameter (I.D.) and crosssection (W); also known as dash number.
SKIVING - slicing of a seal's surface, as by gland edges during installation.
SOLUBLE - susceptible to being dissolved in a fluid.
SOLVENT - any substance, typically a liquid, capable of dissolving other substances. SOUR CRUDE - petroleum oil contaminated with hydrogen sulfide (H2S).
SOUR GAS - natural gas contaminated with hydrogen sulfide (H2S).
SPECIFIC GRAVITY - ratio of the weight of a given substance to the weight of an equal volume of water at a specified temperature. Specific gravity is often used to identify rubber compounds.
SPIRAL FAILURE - type of O-ring failure occurring when one portion of the ring tends to roll while another portion slides in the gland, causing twisting and seal failure. SPRUE MARK - raised spot or small depression seen on an injection or transfer molded product; caused when the finished molded part is removed from the injection nozzle (sprue or gate) through which the material is injected into the mold cavity; also known as a gate mark.

SQUEEZE - compression of an O-ring's cross-section between mating surfaces; noted as both a decimal measurement (in inches and/or millimeters) and as a percentage of the original cross-section (width). Radial compression occurs on the outside diameter (O.D.) and inside diameter (I.D.). Axial compression occurs on the top and bottom surfaces.
STATIC - describes an application in which there is no relative motion between the mating surfaces to be sealed.
STATIC FRICTION - initial frictional force which must be overcome to initiate movement; also known as break-out friction or stiction (see Figure 159).
STATIC SEAL - seal functioning in an environment in which there is no relative motion between the mating surfaces being sealed.
STICK-SLIP - irregular or jerky seal motion caused by varying amounts of static and dynamic friction.
STICTION - initial frictional force which must be overcome to initiate movement; also known as static friction or break-out friction (see Figure 159).
STOICHIOMETRY, PERCENT - level of curative (chain extender) used on a given prepolymer. Percentages used have varying effects on the physical properties of the finished elastomer.
STRAIN - amount of deflection, expressed as a percentage of original length, due to an applied force (stress).
STRAIN CRYSTALLIZATION - partial crystallization of an elastomer that temporarily results when a stretching force causes the tangled macromolecular chains to untangle and align to form crystals; the chains revert to their normal state of entanglement when the force is removed. Most elastomers do not strain crystallize, but natural rubber,
chloroprene (Neoprene®), and hydrogenated nitrile will.

Figure 159: Flow of the seal into surface pores

$G L O S S A R Y$

STRESS - an applied force (in psi) resulting in material deflection (strain).
STRESS RELAXATION - steady decline in sealing force when an elastomer is
compressed over a period of time. In terms of the life of a seal, stress relaxation is like dying, whereas compression set is like death.
STRETCH - measured as a percentage increase in the inside diameter (I.D.) of an O-ring, stretch results in a reduction and flattening of the seal's cross-section. There are two types of stretch: installation stretch (as the seal is being placed in the groove) and assembled stretch (once the seal is seated).
SUBLIMATION - direct conversion of a substance from a solid state to a vapor state, and from a vapor back to a solid. The substance does not become liquid during either transition.
SUN CHECKING - cracking or crazing of an elastomer's surface due to the action of sunlight; also known simply as checking.
SURFACE FINISH - average value of exterior roughness, often expressed in $\mu \mathrm{m}$ RMS (Root Mean Square) or Ra (roughness average)
SWELL - volumetric increase of an elastomeric material when in contact with a fluid.

T

TEAR RESISTANCE - resistance to the growth of a nick or cut in a rubber specimen when tension is applied.
TEMPERATURE (MAXIMUM) - highest temperature a rubber compound can withstand prior to undergoing a physical or chemical change.
TEMPERATURE (MINIMUM) - lowest temperature a rubber compound can withstand prior to losing rubbery properties.
TEMPERATURE RANGE - minimum and maximum temperature limits within which a rubber material will effectively perform.
TEMPERATURE (SERVICE) - range of temperatures to which a rubber compound will be subjected in a given application.
TENSILE MODULUS - the force in psi (stress) required to produce a certain elongation (strain), usually 100\%; a good indication of toughness and resistance to extrusion; also known as modulus or tensile stress.
TENSILE STRENGTH - force in pounds per square inch (psi) required to break a rubber specimen.
TENSILE STRESS - the force in psi (stress) required to produce a certain elongation (strain), usually 100\%; a good indication of toughness and resistance to extrusion; also known as modulus or tensile modulus.
TENSION SET - increase in the length of an elastomeric specimen following initial stretching and release.
TERPOLYMER - polymer composed of three different monomers chemically combined (see Figure 160).
TETRAPOLYMER - polymer composed of four different monomers chemically combined. THERMAL EXPANSION - linear or volumetric expansion of a material due to a
temperature increase.

TERPOLYMER

Figure 161: Transfer molding utilizes a closed mold accessed through a gate

$G L O S S A R Y$

THERMOPLASTIC - an ionically-bonded polymeric material capable of being softened and formed when heated and injected into a cool mold. Upon cooling in the mold a thermoplastic material will harden (freeze) and regain its original properties. A thermoplastic material can be reprocessed many times.
THERMOSET - polymeric material that forms permanent covalent bonds in an
irreversible chemical reaction known as cross-linking, curing, or vulcanizing. Although the cured part can later be softened by heat, it cannot be remelted or reprocessed without extensive chemical treatment.
TIR - Total Indicator Reading; a measurement of shaft eccentricity that results when the shaft centerline is different from its axis of rotation.
TOLERANCE - allowable deviation (plus and minus) from a specified dimension.
TOLERANCE BUILD-UP - sum of the tolerances of all of the elements in a sealing system (e.g. I.D., cross-section, gland dimension); also known as tolerance stack-up. TOOL - alternative name for a mold.
TORQUE - turning or twisting force that produces, or tends to produce, rotation of a shaft.
TORSIONAL STRENGTH - ability of a material to resist twisting and its damaging effects. TORUS - donut-shaped ring; another name for an 0-ring.
TPE - thermoplastic elastomer with rubber-like properties that is processed by injection molding, blow molding, extrusion, etc.
TPU - thermoplastic polyurethane elastomer that is processed by injection molding, blow molding, or extrusion.
TRANSFER CHAMBER - area within a transfer mold in which the elastomeric compound is heated prior to being squeezed down through a sprue, a runner, and a gate leading into a closed mold cavity to be shaped and vulcanized; also known as a pot.
TRANSFER MOLDING - method of molding thermosetting materials (see Figure 161). The elastomeric compound is placed in a transfer chamber (pot) which is part of the mold, heated, then squeezed down through a sprue, a runner, and a gate leading into a closed mold cavity to be shaped and vulcanized. The advantages of transfer molding are that vulcanization is faster, so the process is more efficient, and the part is formed with little or no flash.
TRIM - removal of excess material from a molded rubber product.
TRIM CUT - damage done to a molded rubber product by excessive trimming.

ULTIMATE ELONGATION - amount, expressed as a percentage of original length, that a specimen has stretched at the time of breakage.
UNDER-CURE - degree of incomplete vulcanization resulting in undeveloped physical properties and tackiness.
UNI-DIRECTIONAL SEAL - seal which provides fluid sealing on only one side
UNSATURATED BONDS - double or triple bonds between carbon atoms creating sites that can undergo numerous chemical reactions, including addition of hydrogen atoms (hydrogenation), cross-linking, or chemical deterioration such as oxidation.
known as tolerance stack-up.
TOOL - alternative name for a mold.

V

VACUUM - condition in which the pressure in a chamber is less than atmospheric pressure.
VALENCE - ability of an atom to form one or more energy bonds with neighboring atoms.
VAN DER WAALS FORCES - weak electrostatic attractions between polymer chains that are adjacent but that have not yet been cross-linked. These intermolecular forces are at their peak when a material is cool. Heating the material weakens the forces and "loosens" the chains, thus increasing pliability and making molding possible.
VAPOR - a gas, whose temperature is below its critical temperature (tc), that normally exists as a liquid under atmospheric conditions.
VAPOR PRESSURE - pressure exerted by a heated liquid or solid in a closed container.
VAPOR PRESSURE - pressure exerted by a heated liquid or solid in a closed cont
VENT - (a) to give off excess air or pressure so as to avoid build-up and possible
VENT - (a) to give off excess air or pressure so as to avoid build-up and possible
rupture; and (b) a shallow hole or channel designed into a mold to facilitate the escape of air as it is displaced by incoming materials to be molded.
VESTIGE - remnants of a runner system visible on the surface of a molded article. VISCO-ELASTIC - describes rubber-like materials having both a viscous phase (like a damper) and an elastic phase (like a spring).
VISCOMETER - shearing disk device used to gauge the viscosity of a rubber sample under heat and pressure. Often referred to as the Mooney Viscometer, this device was once the most common tool for determining processing characteristics but has now largely been replaced by the rheometer.
VISCOSITY - resistance to flow; the thicker the substance (such as a liquid), the more viscous it is, i.e. the less it flows
VOID - unintended empty space, such as a pit or air pocket.

GLOSSARY

VOLATILE - readily vaporizable at a relatively low temperature.
VOLUME CHANGE - increase (swell) or decrease (shrinkage) in the volume of a specimen which has been immersed in a fluid, noted as a percentage of original volume.
VOLUME SHRINKAGE - volumetric decrease of an elastomeric material when in contact with a fluid; also known simply as shrinkage.
VOLUME SWELL - volumetric increase of an elastomeric material when in contact with a fluid; also known simply as swell.
VULCANIZATE - cured rubber compound.
VULCANIZATION - heat-induced process whereby the long chains of the rubber
molecules become cross-linked by a vulcanizing agent to form three-dimensional
elastic structures. This reaction transforms soft, weak, non-cross-linked materials into strong elastic products; also known as cure.
VULCANIZING AGENT - material added to an uncured batch of rubber that causes the polymer chains to crosslink to one another (vulcanize), forming a three-dimensional elastic structure; also known as curing agent.

W

WAVINESS - irregularities on a gland's surface with considerably longer wavelengths than those referenced as roughness. Waviness may be caused by machinery vibrations or material warping
WEATHERING - cracking and degradation of the physical properties of a rubber product exposed to atmospheric conditions; also known as atmospheric cracking
WEEPAGE - seal leakage of less than one drop per minute; not necessarily an indication of seal failure
WIDTH (W) - another term for the cross-section of an 0-ring.
WIPER - flexible ring used to remove dirt, dust, mud, and other contaminants from a rod or a shaft in order to prevent them from entering a hydraulic, pneumatic, or mechanical system; also known as a wiper ring

Y

YOUNG'S MODULUS (E) - a measure of material stiffness; defined as the ratio of the stress (force in psi) to the strain (percentage increase in original length) as measured on a rubber specimen; also known as modulus of elasticity; not the same as tensile modulus.

ABBREVIATIONS

[^4]MIL - Military (specification)
MIL STD - Military Standard
MIN - minimum
MPA - megapascal; SI equivalent of psi; sometimes a unit of measure in ASTM D 2000
line call-outs
MQ - methyl silicone rubber
MS - Military Standard
NAS - National Aerospace Standard
NASA - National Aeronautics and Space Administration
NBR - nitrile butadiene rubber (Buna N); copolymer of acrylonitrile and butadiene
NBS - National Bureau of Standards
NR - natural rubber; polyisoprene
NSF - National Sanitation Foundation
OSHA - Occupational Safety and Health Administration
PLI - pounds per linear inch
PMQ - phenyl methyl silicone rubber
PSI - pounds per square inch
PTFE - polytetrafluoroethylene
PVMQ - phenyl vinyl methyl silicone rubber
RMA - Rubber Manufacturers Association
RPM - revolutions per minute
SAE - Society of Automotive Engineers
SBR - styrene butadiene rubber (Buna S); copolymer of styrene and butadiene
SG - specific gravity
$\mathbf{S I}$ - denotes The International System of Units (the modern metric system); taken from the French, "Le Système International d'Unités"
SPEC - specification
Tc - critical temperature
TFE - tetrafluoroethylene; a fluoroplastic
Tg - glass transition
TIR - Total Indicator Reading
UL - Underwriters Laboratories
UV - ultraviolet light
VMQ - vinyl methyl silicone rubber
XNBR - carboxylated nitrile rubber

NOTES
\longrightarrow

355

NOTES
\longrightarrow

[^0]: Table 2: Changes in Physical Properties as a Result of Polymerization

[^1]: Table 4: Conversions for Durometer Hardness Scales

[^2]: Figure 98: Static Crush Sea

[^3]: Figure 157: Surface irregularities

[^4]: ACM - polyacrylate rubber
 ACN - acrylonitrile; component in nitrile rubber
 AEM - ethylene-acrylic rubber; copolymer of ethylene and methyl acrylate
 AMS - Aerospace Material Specification
 ANSI - American National Standards Institute
 AQL - Acceptable Quality Level
 ARP - Aerospace Recommended Practice
 AS - Aerospace Standard
 ASTM - American Society for Testing and Materials
 AU - polyester-based polyurethane rubber
 BR - polybutadiene rubber
 CC - cubic centimeter
 CO - homopolymer of epichlorohydrin
 CR - polychloroprene rubber (Neoprene®)
 CSM - chlorosulfonated polyethylene rubber (Hypalon®)
 DIA - diameter
 DIN - German standardization organization
 ECO - copolymer of epichlorohydrin and ethylene oxide
 EP, EPM, EPDM - ethylene-propylene rubber
 EPA - Environmental Protection Agency
 EU - polyether-based polyurethane rubber
 FDA - Food and Drug Administration
 FEP - tetrafluoroethylene
 FEPM - tetrafluoroethylene-propylene rubber
 FFKM - perfluoroelastomer
 FKM - fluorocarbon elastomers
 FMQ - fluoromethyl silicone rubber (fluorosilicone)
 FSA - Fluid Sealing Association
 FVMQ - fluoro vinyl methyl silicone rubber (fluorosilicone)
 GRS - Government Rubber Styrene; now SBR
 HNBR - hydrogenated nitrile rubber
 HSN - highly saturated nitrile; alternative name for HNBR
 IIR - butyl rubber; copolymer of isobutylene and isoprene
 $\mathbf{I N}$ - inch
 IR - isoprene rubber
 IRHD - International Rubber Hardness degrees
 IRM - Industry Reference Material, as in IRM 903 oil
 ISO - International Organization for Standardization
 JIC - Joint Industrial Conference on Hydraulic Standards for Industrial Equipment
 KN/M - kilonewton per meter; SI equivalent of pli; sometimes a unit of measure in ASTM
 D 2000 line call-outs
 MAX - maximum
 MEK - methyl ethyl ketone

